Skip to main content
Log in

Nanotechnology in biorobotics: opportunities and challenges

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotechnology recently opened a series of unexpected technological opportunities that drove the emergence of novel scientific and technological fields, which have the potential to dramatically change the lives of millions of citizens. Some of these opportunities have been already caught by researchers working in the different fields related to biorobotics, while other exciting possibilities still lie on the horizon. This article highlights how nanotechnology applications recently impacted the development of advanced solutions for actuation and sensing and the achievement of microrobots, nanorobots, and non-conventional larger robotic systems. The open challenges are described, together with the most promising research avenues involving nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamatzki A (2013) Slime mould tactile sensor. Sens Actuators B 188:38–44

    Article  Google Scholar 

  • Albu-Schaffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimbock T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30

    Article  Google Scholar 

  • Argawal R, Ladavac K, Roichman Y, Yu G, Lieber CM, Grier DG (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13(22):8906–8912

    Article  Google Scholar 

  • Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303(5665):1845–1849

    Article  Google Scholar 

  • Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348–3391

    Article  Google Scholar 

  • Bao J, Yang Z, Nakajima N, Shen Y, Takeuchi M, Huang Q, Fukuda T (2014) Self-actuating asymmetric platinum catalytic mobile nanorobot. IEEE Trans Robot 30(1):33–39

    Article  Google Scholar 

  • Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2(5):275–284

  • Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Article  Google Scholar 

  • Berne RW (2004) Towards the conscientious development of ethical nanotechnology. Sci Eng Ethics 10(4):627–638

    Article  Google Scholar 

  • Bishop KJ, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630

    Article  Google Scholar 

  • Cai H, Xu KJ, Liu AQ, Fang Q, Yu MB, Lo GQ, Kwong DL (2012) Nano-opto-mechanical actuator driven by gradient optical force. Appl Phys Lett 100(1):013108

    Article  Google Scholar 

  • Chan V, Asada HH, Bashir R (2014) Utilization and control of bioactuators across multiple length scales. Lab Chip 14:653–670

    Article  Google Scholar 

  • Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19–30

    Article  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire sensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  Google Scholar 

  • Dario P (2005) Biorobotics. J Robot Soc Jpn 23(5):552–554

    Article  Google Scholar 

  • Dario P, Guglielmelli E, Allotta B, Carrozza MC (1996) Robotics for medical applications. IEEE Robot Autom Mag 3(3):44–56

    Article  Google Scholar 

  • Dario P, Hannaford B, Takanishi A (2008) Guest editorial special issue on biorobotics. IEEE Trans Robot 24(1):3–4

    Article  Google Scholar 

  • Dennis JR, Howard J, Vogel V (1999) Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology 10(3):232–236

    Article  Google Scholar 

  • Dolatabadi JEN, de la Guardia M (2014) Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal Methods 6:3891–3900

    Article  Google Scholar 

  • Dong L, Nelson BJ (2007) Tutorial-robotics in the small part II: nanorobotics. IEEE Robot Autom Mag 14(3):111–121

    Article  Google Scholar 

  • Ekinci KL (2005) Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1(8–9):786–797

    Article  Google Scholar 

  • Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zetti A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410

    Article  Google Scholar 

  • Ferreira A, Martel S (2014) Guest editorial: special issue on nanorobotics. IEEE Trans Robot 30(1):1–2

    Article  Google Scholar 

  • Fomin VM, Hippler M, Magdanz V, Soler L, Sanchez S, Schmidt OG (2014) Propulsion mechanism of catalytic microjet engines. IEEE Trans Robot 30(1):40–48

    Article  Google Scholar 

  • Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R, Starsich F, Mao A, Sotiriou GA, Pané S, Pratsinis SE, Mooney D, Nelson BJ (2013) An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater 26(6):952–957

    Article  Google Scholar 

  • Grange W, Strick TR (2013) Magnetic trapping of single molecules: principles, developments, and applications. Proc Int Soc Opt Eng (SPIE) 8810:88101H

    Google Scholar 

  • Grunwald A (2005) Nanotechnology—A new field of ethical inquiry? Sci Eng Ethics 11(2):187–201

    Article  Google Scholar 

  • Guillot N, de la Chapelle ML (2012) Lithographied nanostructures as nanosensors. J Nanophoton 6(1):064506

    Article  Google Scholar 

  • Hamdi M, Ferreira A (2014) Guidelines for the design of magnetic nanorobots to cross the blood-brain barrier. IEEE Trans Robot 30(1):81–92

    Article  Google Scholar 

  • Hauser CAE, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43(15):5326–5345

    Article  Google Scholar 

  • Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys 20(38):385214

    Google Scholar 

  • Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuators A 136:51–61

    Article  Google Scholar 

  • Hou J, Liu L, Wang Z, Wang Z, Xi N, Wang Y, Wu C, Dong Z, Yuan S (2013) AFM-based robotic nano-hand for stable manipulation at nanoscale. IEEE Trans Autom Sci Eng 10(2):285–295

    Article  Google Scholar 

  • Jeong CK, Park KI, Ryu J, Hwang GT, Lee KJ (2014) Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater 24:2620–2629

    Article  Google Scholar 

  • Kamm RD, Bashir R (2014) Creating living cellular machines. Ann Biomed Eng 42(2):445–459

    Article  Google Scholar 

  • Khalil ISM, Dijkslag HC, Abelmann L, Misra S (2014) MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett 104(22):223701

    Article  Google Scholar 

  • Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31(5):287–294

    Article  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MC, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 2887(5463):622–625

    Article  Google Scholar 

  • Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  • Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Robot 26(7):709–727

    Article  Google Scholar 

  • Lenaghan SC, Wang Y, Xi N, Fukuda T, Tarn T, Hamel WR, Zhang M (2013) Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans Biomed Eng 60(3):667–673

    Article  Google Scholar 

  • Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2:114–120

    Article  Google Scholar 

  • Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249

    Article  Google Scholar 

  • Liedl T, Sobey TL, Simmel FC (2007) DNA-based nanodevices. Nano Today 2(2):36–41

  • Lucarini G, Palagi S, Beccai L, Menciassi A (2014) A power-efficient propulsion method for magnetic microrobots. Int J Adv Robot Syst 11(1):116

    Google Scholar 

  • Lucarotti C, Oddo CM, Vitiello N, Carrozza MC (2013) Synthetic and bio-artificial tactile sensing: a review. Sensors 13(2):1435–1466

    Article  Google Scholar 

  • Luo X, Morrin A, Killard AJ, Smyth MR (2005) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    Article  Google Scholar 

  • Lutz JF, Ouchi M, Liu DR, Sawamoto M (2013) Sequence-controlled polymers. Science 341(6146):1238149

    Article  Google Scholar 

  • Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25:6581–6588

    Article  Google Scholar 

  • Martel S, Tremblay CC, Ngakeng S, Langlois G (2006) Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 89:233904

    Article  Google Scholar 

  • Martel S, Felfoul O, Mathieu JB, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009a) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 28(9):1169–1182

    Article  Google Scholar 

  • Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009b) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582

    Article  Google Scholar 

  • Moktadir Z (2014) Graphene nanoelectromechanics (NEMS). Graphene: Properties, preparation, characterisation and devices. Southampton University, UK, p 341. doi: 10.1533/9780857099334.3.341

    Google Scholar 

  • Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by molecular motors. Nanotechnology 10(3):225–231

    Article  Google Scholar 

  • Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    Article  Google Scholar 

  • Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Ann Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  • Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, Kim JE, Kim SO, Kim DK, Wang ZL, Lee KJ (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004

    Article  Google Scholar 

  • Park SJ, Park SH, Cho S, Kim DM, Lee Y, Ko SY, Hong Y, Choy HE, Min JJ, Park JO, Park S (2013) New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep 3:3394

    Google Scholar 

  • Park SJ, Lee Y, Choi YJ, Cho S, Jung HE, Zheng S, Park BJ, Ko SY, Park JO, Park S (2014) Monocyte-based microrobot with chemotactic motility for tumor theragnosis. Biotechnol Bioeng 111(10):2132–2138

    Article  Google Scholar 

  • Raguse B, Müller KH, Wieczorek L (2003) Nanoparticle actuators. Adv Mater 15(11):922–926

    Article  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2012) DNA Origami: synthesis and self-assembly. Curr Prot Nucl Acid Chem. doi: 10.1002/0471142700.nc1209s48

  • Ray A, Kopelman R (2013) Hydrogel nanosensors for biophotonic imaging of chemical analytes. Nanomedicine 8(11):1829–1838

    Article  Google Scholar 

  • Requicha AAG (2003) Nanorobots, NEMS, and nanoassembly. Proc IEEE 91(11):1922–1933

    Article  Google Scholar 

  • Ricotti L, Menciassi A (2012) Bio-hybrid muscle cell-based actuators. Biomed Microdev 14(6):987–998

    Article  Google Scholar 

  • Ricotti L, Menciassi A, Morishima K (2012) Guest editorial introduction to the special issue on bio-hybrid systems and living machines. Biomed Microdev 14(6):965–967

    Article  Google Scholar 

  • Ricotti L, Fujie T, Vazão H, Ciofani G, Marotta R, Brescia R, Filippeschi C, Corradini I, Matteoli M, Mattoli V, Ferreira L, Menciassi A (2013) Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS One 8(8):e71707

    Article  Google Scholar 

  • Ricotti L, das Neves RP, Ciofani G, Canale C, Nitti S, Mattoli V, Mazzolai B, Ferreira L, Menciassi A (2014) Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts. J Nanop Res 16(2):1–14

    Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  Google Scholar 

  • Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R, Kamm RD, Chen CS, Asada HH (2012) Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12:4976–4985

    Article  Google Scholar 

  • Sarkar S, Guibal E, Quignard F, Sengupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanop Res 14(2):1–24

    Google Scholar 

  • Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074

    Article  Google Scholar 

  • Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458:1121–1122

    Article  Google Scholar 

  • Tasoglu S, Diller E, Guven S, Sitti M, Demirci U (2014) Untethered micro-robotic coding of three-dimensional material composition. Nat Commun. doi: 10.1038/ncomms4124

  • Terasawa N, Hayashi Y, Koga T, Higashi N, Asaka K (2014) High-performance polymer actuators based on poly (ethylene oxide) and single-walled carbon nanotube–ionic liquid-based gels. Sens Actuators B Chem 202:382–387

  • Tiang F, Zhou G, Du Y, Chau FS (2013) Applications of nanoelectromechanical actuators in nano optomechanics. Opt MEMS Nanophoton (OMN) 173–174. doi:10.1109/OMN.2013.6659115

  • Verbeeck J, Tian H, Van Tendeloo G (2013) How to manipulate nanoparticles with an electron beam? Adv Mater 25(8):1114–1117

    Article  Google Scholar 

  • Veruggio G, Operto F (2008) Roboethics: social and ethical implications of robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1499–1524

    Chapter  Google Scholar 

  • Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  Google Scholar 

  • Wasisto HS, Huang K, Merzsch S, Stranz A, Waag A, Peiner E (2014) Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications. Microsyst Technol 20(4–5):571–584

    Article  Google Scholar 

  • Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184

    Article  Google Scholar 

  • Xu S, Yeh Y, Poirier G, McAlpine MC, Register RA, Yao N (2013) Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett 13:2393–2398

    Article  Google Scholar 

  • Ye Z, Sitti M (2014) Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip 14:2177–2182

    Article  Google Scholar 

  • Zhao HQ, Lin L, Li JR, Tang JA, Duan MX, Jiang L (2001) DNA biosensor with high sensitivity amplified by gold nanoparticles. J Nanop Res 3(4):321–323

    Article  Google Scholar 

  • Zhou L, Marras AE, Su HJ, Castro CE (2013) DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8(1):27–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Ricotti.

Additional information

Guest Editors: Leonardo Ricotti, Arianna Menciassi

This article is part of the topical collection on Nanotechnology in Biorobotic Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricotti, L., Menciassi, A. Nanotechnology in biorobotics: opportunities and challenges. J Nanopart Res 17, 84 (2015). https://doi.org/10.1007/s11051-014-2792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2792-5

Keywords

Navigation