Skip to main content

Advertisement

Log in

Bio-hybrid muscle cell-based actuators

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Actuation is an essential function of any artificial or living machine, allowing its movement and its interaction with the surrounding environment. Living muscles have evolved over millions of years within animals as nature’s premier living generators of force, work and power, showing unique characteristics in comparison with standard artificial actuators. Current actuation technologies actually represent a real bottleneck in many robotics and ICT applications, including the bio-inspired ones. Main limitations involve inertia and backdrivability, stiffness control and power consumption. The development of novel actuators able to better mimic or even to overcome living muscle performances would open new horizons in robotics and ICT technologies: these components would allow the raise of a new generation of machines, with life-like movements and outstanding performances. An innovative solution to achieve this goal is represented by the merging between artificial and living entities, towards the realization of bio-hybrid devices. The aim of the present article is to describe the scientific and technological efforts made by researchers in the last two decades to achieve cell- or tissue-based actuators, with the dream of matching or outperforming natural muscles and to efficiently power micro- and mini-devices. The main challenges connected to the development of a cell-based actuator are highlighted and the most recent solutions to this scientific/technological problem are depicted, reporting advantages and drawbacks of each single approach. Future perspectives are also described, envisioning bio-hybrid actuators as key components of a new generation of machines able to show life-like movements and behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. Proc. BioRob 2008. 501 (2008)

  • P.W. Alford, A.W. Feinberg, S.P. Sheehy, K.K. Parker, Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials. 31, 3613 (2010)

    Article  Google Scholar 

  • H. H. Asada, Bio-Bots: bio-integrated robotics using live cells as components. IEEE ICRA Plenary Lecture (2012)

  • T. Asano, T. Ishizuka, H. Yawo, Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol. Bioeng. 109, 199 (2012)

    Article  Google Scholar 

  • Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles (The International Society for optics and photonics, USA, 2004)

    Book  Google Scholar 

  • M. Bassil, J. Davenas, M.E. Tahchi, Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application. Sens. Act. B. Chem. 134, 496 (2008)

    Article  Google Scholar 

  • J. Bath, A.J. Turberfield, DNA nanomachines. Nat. Nanotechnol. 2, 275 (2007)

    Article  Google Scholar 

  • S. Bauerdick, C. Burkhardt, D.P. Kern, W. Nisch, Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication. Biomed. Microdevices. 5, 93 (2003)

    Article  Google Scholar 

  • N. Borghol, L. Mora, T. Jouenne, N. Jaffezic-Renault, N. Sakly, A.C. Duncan, Y. Chevalier, P. Lejeune, A. Othmane, Monitoring of E. Coli immobilization on modified gold electrode: a new bacteria-based glucose sensor. Biotechnol. Bioproc. Eng. 15, 220 (2010)

    Article  Google Scholar 

  • S. Braun, Muscular gene transfer using nonviral vectors. Curr. Gene. Ther. 8, 391 (2008)

    Article  Google Scholar 

  • P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rap. Comm. 31, 10 (2010)

    Article  Google Scholar 

  • D.G. Caldwell, Natural and artificial muscle elements as robot actuators. Mechatronics 3, 269 (1993)

    Article  Google Scholar 

  • M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario, An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6, 036002 (2011)

    Article  Google Scholar 

  • S. Calve, H. G. Simon, Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. J. Fed. Am. Soc. Exp. Biol. doi: 10.1096/fj.11-200162 (2012)

  • F.D. Carlson, D.R. Wilkie, Muscle physiology (Prentice-Hall, USA, 1974)

    Google Scholar 

  • E. Cimetta, S. Pizzato, S. Bollini, E. Serena, P. De Coppi, N. Elvassore, Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdevices. 11, 389 (2009)

    Article  Google Scholar 

  • G. Ciofani, L. Ricotti, S. Danti, S. Moscato, C. Nesti, D. D’Alessandro, D. Dinucci, F. Chiellini, A. Pietrabissa, M. Petrini, A. Menciassi, Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation. Int. J. Nanomed. 5, 285 (2010a)

    Article  Google Scholar 

  • G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli, A. Menciassi, Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS. Nano. 4, 6267 (2010b)

    Article  Google Scholar 

  • S.T. Cooper, A.L. Maxwell, E. Kizana, M. Ghoddusi, E.C. Hardeman, I.E. Alexander, D.G. Allen, K.N. North, C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with pheripheral nuclei and adult fast myosin expression. Cell. Mot. Cytoskel. 58, 200 (2004)

    Article  Google Scholar 

  • P. Dario, M.C. Carrozza, E. Guglielmelli, C. Laschi, A. Menciassi, S. Micera, F. Vecchi, Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects. Rob. Autom. Mag. 12, 29–45 (2005)

    Article  Google Scholar 

  • P. Dario, P.F.M.J. Verschure, T. Prescott, G. Cheng, G. Sandini, R. Cingolani, R. Dillmann, D. Floreano, C. Leroux, S. MacNeil, P. Roelfsema, X. Verykios, A. Bicchi, C. Melhuish, A. Albu-Schäffer, Robot companions for citizens. Proc. Comp. Sci. 7, 47 (2011)

    Article  Google Scholar 

  • M. Das, J.W. Rumsey, C.A. Gregory, N. Bhargava, J.F. Kang, P. Molnar, L. Riedel, X. Guo, J.J. Hickman, Embryonic motoneuron-skeletal muscle co-culture in a defined system. Neurosci. 146, 481 (2007)

    Article  Google Scholar 

  • D.M. Delo, D. Eberli, J.K. Williams, K.E. Andersson, A. Atala, S. Soker, Angiogenic gene modification of skeletal muscle cells to compensate for ageing-induced decline in bioengineered functional muscle tissue. Brit. J. Urol. Int. 102, 878 (2008)

    Article  Google Scholar 

  • M.D. Delp, D. Pette, Morphological changes during fiber type transitions in low-frequency-stimulated rat fast-twitch muscle. Cell. Tissue. Res. 277, 363 (1994)

    Article  Google Scholar 

  • R.G. Dennis, H. Herr, Engineered muscle actuators: cells and tissues. Biomimetics: biologically inspired technologies (Taylor & Francis, USA, 2006)

    Google Scholar 

  • R.G. Dennis, P.E. Kosnik II, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro. Cell. Dev. Biol. Anim. 36, 327 (2000)

    Article  Google Scholar 

  • E. Diesel, M. Schreiber, J.R. Van der Meer, Development of bacteria-based bioassays for arsenic detection in natural waters. Anal. Bioanal. Chem. 394, 687 (2009)

    Article  Google Scholar 

  • J. Elbaz, Z.G. Wang, R. Orbach, I. Willner, pH-stimulated concurrent mechanical activation of two DNA tweezers. A set-reset logic gate system. 9, 4510 (2009)

  • A.J. Engler, M.A. Griffin, S. Sen, C.G. Bönnemann, H.L. Sweeney, D.E. Discher, Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166, 877 (2004)

    Article  Google Scholar 

  • A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Muscular thin films for building actuators and powering devices. Science 317, 1366 (2007)

    Article  Google Scholar 

  • T. Fujie, L. Ricotti, A. Desii, A. Menciassi, P. Dario, V. Mattoli, Evaluation of substrata effect on cell adhesion properties using freestanding poly(lactic acid) nanosheets. Langmuir 27, 13173 (2011)

    Article  Google Scholar 

  • H. Fujita, V.T. Dau, K. Shimizu, R. Hatsuda, S. Sugiyama, E. Nagamori, Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed. Microdevices. 13, 123 (2011)

    Article  Google Scholar 

  • J. Gingras, R.M. Rioux, D. Cuvelier, N.A. Geisse, J.W. Lichtman, G.M. Whitesides, L. Mahadevan, J.R. Sanes, Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys. J. 97, 2771 (2009)

    Article  Google Scholar 

  • F. Greco, T. Fujie, L. Ricotti, S. Taccola, V. Mattoli, Micro-wrinkled conducting polymer interface for anisotropic multi-cellular alignment. (2012)

  • B. Hannaford, K. Jaax, G. Klute, Bio-inspired actuation and sensing. Auton. Rob. 11, 267 (2001)

    Article  MATH  Google Scholar 

  • H. Herr, R.G. Dennis, A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehab. 1 (2004). doi:10.1186/1743-0003-1-6

  • J.C. Hoffmann, J.L. West, Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft. Matter. 6, 5056 (2010)

    Article  Google Scholar 

  • T. Hoshino, K. Imagawa, K. Morishima, Cardiomyocyte-driven wet gel robotics chemical modulation of cardiac network pattern generator. Proc. Int. Conf. Biomech. Rob Biomech. 547 (2010)

  • J.C. Houk, W.Z. Rymer, Neural control of muscle length and tension. Handbook of physiology, the nervous system, motor control (American Physiological Society, USA, 1981)

    Google Scholar 

  • N.F. Huang, S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li, Myotube assembly on nanofibrous and micropatterned polymers. Nano. Lett. 6, 537 (2006)

    Article  Google Scholar 

  • A. Huber, A. Pickett, K.M. Shakesheff, Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfiber arrays. Eur. Cells. Mat. 14, 56 (2007)

    Google Scholar 

  • Y. Ido, D. Takahashi, M. Sasaki, K. Nagamine, T. Miyake, P. Jasinski, M. Nishizawa, Conducting polymer microelectrodes anchored to hydrogel films (2012)

  • T. Ishibashi, Y. Hoshino, H. Kaji, M. Kanzaki, M. Sato, M. Nishizawa, Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomed. Microdevices. 11, 413 (2009)

    Article  Google Scholar 

  • T. Ishisaka, H. Sato, Y. Akiyama, Y. Furukawa, K. Morishima, Development of bio hybrid micro power generator using contractile force of cultured cardiomyocytes. Symposium on Micro-NanoMechatronics and Human Science. 1 (2006)

  • T. Ishisaka, H. Sato, Y. Akiyama, Y. Furukawa, K. Morishima, Bio-actuated power generator using heart muscle cells on a PDMS membrane. Solid-State Sensors, Actuators and Microsystems Conference. 903 (2007)

  • H. Jahnsen, B.W. Kristensen, P. Thiébaud, J. Noraberg, B. Jakobsen, M. Bove, S. Martinoia, M. Koudelka-Hep, M. Grattarola, J. Zimmer, Coupling of organotipic brain slice cultures to silicon-based arrays of electrodes. Methods 18, 160 (1999)

    Article  Google Scholar 

  • A. Khademhosseini, K.Y. Suh, J.M. Yang, G. Eng, J. Yeh, S. Levenberg, R. Langer, Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25, 3583 (2004)

    Article  Google Scholar 

  • D.H. Kim, J. Park, K.Y. Suh, P. Kim, S.K. Choi, S. Ryu, S. Park, S.H. Lee, B. Kim, Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens. Act. B. 117, 391 (2006)

    Article  Google Scholar 

  • J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, E.S. Yoon, K. Chun, S. Park, Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab. Chip. 7, 1504 (2007)

    Article  Google Scholar 

  • G.K. Klute, J.M. Czerniecki, B. Hannaford, Artificial muscles: actuators for biorobotic systems. Int. J. Rob. Res. 21, 295 (2002)

    Article  Google Scholar 

  • S. Levenberg, J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. Van Blitterswijk, R.C. Mulligan, P.A. D’Amore, R. Langer, Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879 (2005)

    Article  Google Scholar 

  • S. Lv, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, H. Li, Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010)

    Article  Google Scholar 

  • E. Macis, M. Tedesco, P. Massobrio, R. Raiteri, S. Martinoia, An automated microdrop delivery system for neuronal network patterning on microelectrode arrays. J. Neurosci. Meth. 161, 88 (2007)

    Article  Google Scholar 

  • J.U. Meyer, Retina implant – a bioMEMS challenge. Sens. Act. A. Phys. 97, 1 (2002)

    Article  Google Scholar 

  • P. Molnar, W. Wang, A. Natarajan, J.W. Rumsey, J.J. Hickman, Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotech. Progr. 23, 265 (2007)

    Article  Google Scholar 

  • K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sens. Act. B. 119, 345 (2006)

    Article  Google Scholar 

  • K. Morishima, Y. Sakuma, Y. Akiyama, T. Hoshino, Y. Akiyama, M. Yamato, T. Okano, Fabrication of insect muscle-powered sheet toward wet nanorobotics. Proc. IEEE. Nano. 635 (2009)

  • F.A. Mussa-Ivaldi, L.E. Miller, Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends. Neurosci. 26, 329 (2003)

    Article  Google Scholar 

  • K. Nagamine, T. Kawashima, T. Ishibashi, H. Kaji, M. Kanzaki, M. Nishizawa, Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotech. Bioeng. 105, 1161 (2009)

    Google Scholar 

  • K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, M. Nishizawa, Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab. Chip. 11, 513 (2011)

    Article  Google Scholar 

  • D. Neal, H. Asada, Co-fabrication of live skeletal muscles as actuators in a millimeter scale mechanical system. Proc. IEEE. Int. Conf. Rob. Aut. 3251 (2011)

  • Y.V. Pan, T.C. McDevitt, T.K. Kim, D. Leach-Scampavia, P.S. Stayton, D.D. Denton, B.D. Ratner, Micro-scale cell patterning on nonfouling plasma polymerized tetraglyme coatings by protein microcontact printing. Plasm. Polym. 7, 171 (2002)

    Article  Google Scholar 

  • R.M.R. Pizzi, D. Rossetti, G. Cino, D. Marino, A.L. Vescovi, W. Baer, A cultured human neural network operates a robotic actuator. Biosystems 95, 137 (2009)

    Article  Google Scholar 

  • J.L. Pons, Emerging actuator technologies: a micromechatronic approach (John Wiley & Sons, Inc, USA, 2005)

    Book  Google Scholar 

  • A. Rantala, M. Utriainen, N. Kaushik, M. Virta, A.L. Valimaa, M. Karp, Luminescent bacteria-based sensing method for methylmercury specific determination. Anal. Bioanal. Chem. 400, 1041 (2011)

    Article  Google Scholar 

  • L. Ricotti, S. Taccola, V. Pensabene, V. Mattoli, T. Fujie, S. Takeoka, A. Menciassi, P. Dario, Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomed. Microdevices. 12, 809 (2010)

    Article  Google Scholar 

  • J. Rouwkema, N.C. Rivron, C.A. Van Blitterswijk, Vascularization in tissue engineering. Trends. Biotechnol. 26, 434 (2008)

    Article  Google Scholar 

  • B.P. Ruddy, I.W. Hunter, Design and optimization strategies for muscle-like direct-drive linear permanent magnet motors. Int. J. Rob. Res. 30, 834 (2011)

    Article  Google Scholar 

  • S. Sekine, Y. Ido, T. Miyake, K. Nagamine, M. Nishizawa, Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 132, 13174 (2010)

    Article  Google Scholar 

  • E. Serena, S. Zatti, E. Reghelin, A. Pasut, E. Cimetta, N. Elvassore, Soft substrates drive optimal differentiation of human healthy and distrophic myotubes. Integr. Biol. 2, 193 (2010)

    Article  Google Scholar 

  • D.K. Shenoy, D.L. Thomsen III, A. Srinivasan, P. Keller, B.R. Ratna, Carbon coated liquid crystal elastomer film for artificial muscle applications. Sens. Act. A: Phys. 96, 184 (2002)

    Article  Google Scholar 

  • R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400 (2011)

    Article  Google Scholar 

  • J. Shim, A. Grosberg, J.C. Nawroth, K.K. Parker, K. Bertoldi, Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. J. Biomech. 45, 832 (2012)

    Article  Google Scholar 

  • K. Shimizu, H. Fujita, E. Nagamori, Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol. Bioeng. 103, 631 (2009)

    Article  Google Scholar 

  • K. Shimizu, H. Sasaki, H. Hida, H. Fujita, K. Obinata, M. Shikida, E. Nagamori, Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomed. Microdevices. 12, 247 (2010a)

    Article  Google Scholar 

  • K. Shimizu, H. Fujita, E. Nagamori, Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. J. Biosci. Bioeng. 109, 174 (2010b)

    Article  Google Scholar 

  • F.C. Simmel, W.U. Dittmer, DNA nanodevices. Small 1, 284 (2005)

    Article  Google Scholar 

  • N.P. Smith, C.J. Barclay, D.S. Loiselle, The efficiency of muscle contraction. Progr. Biophys. Mol. Biol. 88, 1 (2005)

    Google Scholar 

  • G.M. Spinks, V. Mottaghitalab, M. Bahrami-Samani, P.G. Whitten, G.G. Wallace, Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv. Mat. 18, 637 (2006)

    Article  Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymeric micropillars. Lab. Chip. 6, 230 (2006a)

    Article  Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, An actuated pump on-chip powered by cultured cardiomyocytes. Lab. Chip. 6, 362 (2006b)

    Article  Google Scholar 

  • Y. Tian, C. Mao, Molecular gears: a pair of DNA circles continuously rolls against each others. J. Am. Chem. Soc. 126, 11410 (2004)

    Article  Google Scholar 

  • Q. Tseng, I. Wang, E. Duchemin-Pelletier, A. Azioune, N. Carpi, J. Gao, O. Filhol, M. Piel, M. Thery, M. Balland, A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab. Chip. 11, 2231 (2011)

    Article  Google Scholar 

  • S. Tsuda, K.P. Zauner, Y.P. Gunji, Robot control: from silicon circuitry to cells (Springer Verlag, Germany, 2006)

    Google Scholar 

  • S. Tsuda, K.P. Zauner, Y.P. Gunji, Robot control with biological cells. BioSyst. 87, 215 (2007)

    Article  Google Scholar 

  • S. Tsukada, H. Nakashima, K. Torimitsu, Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS One 7, e33689 (2012)

    Article  Google Scholar 

  • F. Vozzi, D. Mazzei, B. Vinci, G. Vozzi, T. Sbrana, L. Ricotti, N. Forgione, A. Ahluwalia, A flexible bioreactor system for constructing in vitro tissue and organ models. Biotechnol. Bioeng. 108, 2129 (2011)

    Article  Google Scholar 

  • P.Y. Wang, H.T. Yu, W.B. Tsai, Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol. Bioeng. 106, 285 (2010)

    Article  Google Scholar 

  • M.L. Williams, W.J. Kock, Viral-based myocardial gene therapy approaches to alter cardiac function. Ann. Rev. Physiol. 66, 49 (2004)

    Article  Google Scholar 

  • R.C. Woledge, N.A. Curtin, E. Homsher, Energetic aspects of muscle contraction (Bellington: Academic Press, USA, 1985)

    Google Scholar 

  • J.Y. Wong, J.B. Leach, X.Q. Brown, Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 570, 119 (2004)

    Article  Google Scholar 

  • R.G. Wylie, S. Ahsan, Y. Aizawa, K. Maxwell, C.N. Morshead, M.S. Shoichet, Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrigels. Nat. Mater. 10, 799 (2011)

    Article  Google Scholar 

  • J. Xi, E. Dy, M.T. Hung, C. Montemagno, Development of a self-assembled muscle-powered piezoelectric microgenerator. Proc. Nanotech. (2004)

  • J. Xi, J.J. Schmidt, C.D. Montemagno, Self-assembled microdevices driven by muscle. Nat. Mat. 4, 180 (2005)

    Article  Google Scholar 

  • T. Yagi, M. Watanabe, Y. Ohnishi, S. Okuma, T. Mukai, Biohybrid retinal implant: research and development update in 2005. Proc. IEEE. EMBS. 248 (2005)

  • K. Yamasaki, H. Hayashi, K. Nishiyama, H. Kobayashi, S. Uto, H. Kondo, S. Hashimoto, T. Fujisato, Control of myotube contraction using electrical pulse stimulation for bio-actuator. J. Artif. Org. 12, 131 (2009)

    Article  Google Scholar 

  • T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Mot. Cytoskel. 60, 24 (2005)

    Article  Google Scholar 

  • M. Zupan, M.F. Ashby, N.A. Fleck, Actuator classification and selection – the development of a database. Adv. Eng. Mat. 4, 933 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Ricotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricotti, L., Menciassi, A. Bio-hybrid muscle cell-based actuators. Biomed Microdevices 14, 987–998 (2012). https://doi.org/10.1007/s10544-012-9697-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9697-9

Keywords

Navigation