Skip to main content
Log in

Ge quantum dot lattices in Al2O3 multilayers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, we show how to produce materials consisting of regularly ordered Ge quantum dot lattices in an amorphous alumina matrix with a controllable Ge quantum dot size, shape, spacing, crystalline structure, and degree of regularity in their ordering. The production of such materials is achievable already at room temperature by magnetron sputtering deposition of a (Ge + Al2O3)/Al2O3 multilayer. The materials show photoluminescence in the visible and ultraviolet light range, a size-dependent blue shift of the photoluminescence peak and an enhancement of its intensity by size reduction, indicating the quantum dot origin of the photoluminescence. The materials also exhibit excellent mechanical properties due to the alumina matrix. Their internal structure is shown to be highly resistive to irradiation with energetic particles for a large range of the irradiation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Aluguri R, Das S, Manna S, Singha RK, Ray SK (2012) Photoluminescence characteristics of Er doped Ge nanocrystals embedded in alumina matrix. Opt Mater 34:1430–1433

    Article  CAS  Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  • Bogdanović-Radović I, Buljan M, Karlušić M, Skukan N, Božičević I, Jakšić M, Dražić G, Bernstorff S (2012) Ordering of germanium quantum dots in amorphous matrices by MeV ion beams—comparison with standard thermal annealing. Phys Rev B 86:165316

    Article  Google Scholar 

  • Bostedt C, van Buuren T, Willey TM, Franco N, Terminell LJ (2004) Controlling the electronic structure of nanocrystal assemblies by variation of particle–particle interaction. Appl Phys Lett 84:4056–4058

    Article  CAS  Google Scholar 

  • Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560

    Article  CAS  Google Scholar 

  • Budai JD, White CW, Withrow SP, Chisholm MF, Zhu J, Zuhr RA (1997) Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. Nature 390:384–386

    Article  CAS  Google Scholar 

  • Buljan M, Desnica UV, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holy V (2009a) Formation of three-dimensional quantum dot superlattices in amorphous systems: experiments and Monte Carlo simulations. Phys Rev B 79:035310

    Article  Google Scholar 

  • Buljan M, Desnica UV, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009b) The influence of deposition temperature on the correlation of Ge quantum dots positions in amorphous silica matrix. Nanotechnology 20:085612

    Article  CAS  Google Scholar 

  • Buljan M, Bogdanović-Radović I, Karlušić M, Desnica UV, Dražić G, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009c) Formation of long range ordered quantum dots arrays in amorphous matrix by ion beam irradiation. Appl Phys Lett 95:063104

    Article  Google Scholar 

  • Buljan M, Pinto SRC, Rolo AG, Martin Sanchez J, Gomes MJM, Mücklich A, Bernstorff S, Holy V (2010a) Self-assembling of Ge quantum dots in an alumina matrix. Phys Rev B 82:235407

    Article  Google Scholar 

  • Buljan M, Grenzer J, Keller A, Radić N, Valeš V, Bernstorff S, Cornelius T, Metzger HT, Holý V (2010b) Growth of spatially ordered Ge nanoclusters in an amorphous matrix on rippled substrate. Phys Rev B 82:125316

    Article  Google Scholar 

  • Buljan M, Bogdanović-Radović I, Karlušić M, Desnica UV, Radić N, Skukan N, Dražić G, Ivanda M, Matej Z, Valeš V, Grenzer J, Cornelius T, Metzger HT, Holý V (2010c) Generation of an ordered Ge quantum dot array in an amorphous silica matrix by ion beam irradiation: modeling and structural characterization. Phys Rev B 81:085321

    Article  Google Scholar 

  • Buljan M, Bogdanović-Radović I, Karlušić M, Salamon K, Dražić G, Desnica UV, Radić N, Bernstorff S, Jakšić M, Holý V (2011) Design of quantum dot lattices in amorphous matrices by ion beam irradiation. Phys Rev B 84:155312

    Article  Google Scholar 

  • Buljan M, Radić N, Bernstorff S, Dražić G, Bogdanović-Radović I, Holý V (2012) Grazing incidence small angle X-ray scattering: application in study of quantum dot lattices. Acta Crystallogr A A68:124–138

    Article  CAS  Google Scholar 

  • Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741

    Article  CAS  Google Scholar 

  • Chang TC, Yan ST, Liu PT, Chen CW, Lin SH, Sze SM (2004) A novel approach of fabricating germanium nanocrystals for nonvolatile memory application. Electrochem Solid State Lett 7:G17

    Article  CAS  Google Scholar 

  • Courty A, Mermet A, Alboy PA, Duval E, Pileni MP (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–398

    Article  CAS  Google Scholar 

  • Das S, Singha RK, Dhar A, Ray SK, Anopchenko A, Daldosso N, Pavesi L (2011) Electroluminescence and charge storage characteristics of quantum confined germanium nanocrystals. J Appl Phys 110:024310

    Article  Google Scholar 

  • de Azevedo WM, da Silva EF Jr, de Vasconcelos EA, Boudinov H (2005) Visible photoluminescence form Ge nanoclusters in nanoporous aluminium oxide films. Microelectron J 36:992–994

    Article  Google Scholar 

  • de Boer WDAM, Timmerman D, Dohnalova K, Yassievich IN, Zhang H, Buma WJ, Gregorkiewicz T (2010) Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol 5:878

    Article  Google Scholar 

  • Dowd A, Elliman RG, Samoc M, Luther-Davies B (1999) Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix. Appl Phys Lett 74:239

    Article  CAS  Google Scholar 

  • Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  • Grutzmacher D, Fromherz T, Dais C, Stangl J, Müller E, Ekinci Y, Solak HH, Sigg H, Lechner RT, Wintersberger E, Birner S, Holý V, Bauer G (2007) Three-dimensional Si/Ge quantum dot crystals. Nano Lett 7:3150–3156

    Article  Google Scholar 

  • Gusev EP, Cartier E, Buchanan DA, Gribelyuk M, Copel M, Okorn-Schmidt H, D’Emic C (2001) Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues. Microelectron Eng 59:34

    Article  Google Scholar 

  • Hedler A, Klaumünzer S, Wesch W (2005) Boundary effects on the plastic flow of amorphous layers during high-energy heavy-ion irradiation. Phys Rev B 72:054108

    Article  Google Scholar 

  • Jabbour GE, Doderer D (2010) Quantum dot solar cells—the best of both worlds. Nat Photonics 4:604–605

    Article  CAS  Google Scholar 

  • Jensen JS, Franzo G, Petersen TPL, Pereira R, Chevallier J, Petersen MC, Nielsen BB, Nylandsted Larsen AN (2006) Coupling between Ge-nanocrystals and defects in SiO(2). J Lumin 121:409–412

    Article  CAS  Google Scholar 

  • Kanjilal A, Lundsgaard Hansen J, Gaiduk P, Nylandsted Larsen A, Cherkashin N, Claverie A, Normand P, Kapelanakis E, Skarlatos D, Tsoukalas D (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl Phys Lett 82:1212

    Article  CAS  Google Scholar 

  • Klimov VI, Mikhailovsky AA, Su Xu, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317

    Article  CAS  Google Scholar 

  • Konstantatos G, Sargent EH (2010) Nanostructured materials for photon detection. Nat Nanotechnol 5:391

    Article  CAS  Google Scholar 

  • Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G, Finley JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81–84

    Article  CAS  Google Scholar 

  • Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464:45–53

    Article  CAS  Google Scholar 

  • Lee JJ, Wang XG, Bai WP, Lu N, Kwong D-L (2003) Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric. IEEE Trans Electron Devices 50:2067–2072

    Article  CAS  Google Scholar 

  • Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse HW, Law M (2010) Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solid. Nano Lett 10:1960–1969

    Article  CAS  Google Scholar 

  • Maeda Y (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 51:1658

    Article  CAS  Google Scholar 

  • Martin-Sanchez J, Marques L, Vieira EMF, Doan QT, Marchand A, El Hdiy A, Rolo AG, Pinto SRC, Ramos MMD, Chahboun A, Gomes MJM (2012) Ge nanocrystals with highly uniform size distribution deposited on alumina at room temperature by pulsed laser deposition: structural, morphological, and charge trapping properties. J Nanopart Res 14:843

    Article  Google Scholar 

  • Mi Z, Yang J, Bhattacharya P, Qin G, Ma Z (2009) High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE 97:1239–1249

    Article  CAS  Google Scholar 

  • Niquet YM, Allan G, Delerue C, Lannoo M (2000) Quantum confinement in germanium nanocrystals. Appl Phys Lett 77:1182–1184

    Article  CAS  Google Scholar 

  • Pinto SRC, Chahboun A, Buljan M, Khdorov A, Kashtiban RJ, Bangert U, Barradas NP, Alves E, Bernstorff S, Gomes MJM (2010) Multilayers of Ge nanocrystals embedded in Al2O3 matrix: structural and electrical studies. Microelectron Eng 87:2508–2512

    Article  CAS  Google Scholar 

  • Pinto SRC, Rolo AG, Buljan M, Chahboun A, Bernstorff S, Barradas NP, Alves E, Kashtiban RJ, Bangert U, Gomes MJM (2011) Low temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Res Lett 6:341

    Article  Google Scholar 

  • Pinto SRC, Buljan M, Marques ML, Martín-Sánchez M, Conde O, Chahboun A, Ramos AR, Barradas NP, Alves E, Bernstorff S, Grenzer J, Mücklich A, Ramos MMD, Gomes MJM (2012) Influence of annealing conditions on formation of regular lattices of voids and Ge quantum dots in amorphous alumina matrix. Nanotechnology 23:405605

    Article  CAS  Google Scholar 

  • Rowell NL, Lockwood DJ, Berbezier I, Szkutnik PD, Ronda A (2009) Photoluminescence efficiency of self-assembled Ge nanocrystals. J Electrochem Soc 156:H913

    Article  CAS  Google Scholar 

  • Salamon K, Milat O, Buljan M, Desnica UV, Radić N, Dubček P, Bernstorff S (2009) Grazing incidence X-ray study of Ge-nanoparticle formation in (Ge:SiO2)/SiO2 multilayers. Thin Solid Films 517:1899–1903

    Article  CAS  Google Scholar 

  • Schneider JM, Sproul WD, Chia RWJ, Wong MS, Matthews A, Lee K (1997) Very-high-rate reactive sputtering of alumina hard coatings. Surf Coat Technol 96:262–266

    Article  CAS  Google Scholar 

  • Sharp XuQ, Yi DO, Yuan CW, Beeman JW, Yu KM, Ager JW, Chrzan DC, Haller EE (2006) Structural properties of Ge nanocrystals embedded in sapphire. J Appl Phys 100:114317

    Article  Google Scholar 

  • Shen JK, Wu CL, Tan C, Yan RK, Bao XM (2002) Correlation of electroluminescence with Ge nanocrystal sizes in Ge–SiO2 cosputtered films. Phys Lett A 300:307–310

    Article  CAS  Google Scholar 

  • Stollberg DW, Hampikia JM, Riester L, Carter WB (2003) Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Mat Sci Eng A 359:112–118

    Article  Google Scholar 

  • Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578

    Article  CAS  Google Scholar 

  • Takeoka S, Fujii M, Hayashi S, Yamamoto S (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921

    Article  CAS  Google Scholar 

  • Torchynska TV, Polupan G, Palacios Gomes J, Kolobov AV (2003) Photoluminescence of Ge nano-crystallites embedded in silicon oxide. Microelectron J 34:541–543

    Article  CAS  Google Scholar 

  • Wu XL, Gao T, Siu GG, Tong S, Bao M (1999) Defect-related infrared photoluminescence in Ge+-implanted SiO2 films. Appl Phys Lett 74:2420–2422

    Article  CAS  Google Scholar 

  • Xu Q, Sharp ID, Yuan CW, Yi DO, Liao CY, Glaeser AM, Minor AM, Beeman JW, Ridgway MC, Kluth P, Ager JW, Chrzan DC, Haller EE (2006) Large melting-point hysteresis of Ge nanocrystals embedded in SiO2. Phys Rev Lett 97:155701

    Article  CAS  Google Scholar 

  • Yerci S, Kulakci M, Serincan U, Turan R, Shandalov M, Golan Y (2008) Formation of Ge nanocrystals in Al2O3 matrix. J Nanosci Nanotechnol 8:759–763

    Article  CAS  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Science Education and Sports, Croatia (project numbers 0982886-2895, 098-0982886-2859, 1191005-2876, 0982934-2744), and by the European Community as an Integrating Activity [Support of Public and Industrial Research Using Ion Beam Technology (SPIRIT)] under EC contract no. 227012. The authors are grateful to Medeja Gec for preparing samples for STEM measurements and Aleksa Pavlešin for the help in the sample preparation. We thank the HZDR ROBL beam line at the ESRF, Grenoble, for providing us beam time to study in situ the growth process. V. H. acknowledges the support of the Czech Science foundation (project P204/11/0785) and G. D. acknowledges the support of the Slovenian Research Agency (P2-0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Buljan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buljan, M., Radić, N., Ivanda, M. et al. Ge quantum dot lattices in Al2O3 multilayers. J Nanopart Res 15, 1485 (2013). https://doi.org/10.1007/s11051-013-1485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1485-9

Keywords

Navigation