Skip to main content
Log in

One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silica-coated magnetite nanoparticles have been synthesized successfully using a one-step electrochemical method. In this method, pure iron in a dilute aqueous sodium silicate solution that served as a silica precursor was electrooxidized. We show that the presence of silicate can significantly enhance the purity of the magnetite formed. Impurities in the form of FeOOH (found in the magnetite prepared in water) are not found. The magnetite nanoparticles produced by this method are nearly spherical with a mean size ranging from 6 to 10 nm, which is lower than the size of particles prepared in water, and this size range depends on the applied voltage and the sodium silicate concentration. The magnetite nanoparticles exhibit superparamagnetic properties with saturation magnetization ranging from 15 to 22 emu g−1, which is lower than the saturation magnetization of the Fe3O4 bulk materials (M s = 92 emu g−1). This facile method appears to be promising as a synthetic route for producing silica-coated magnetite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berry CC, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D App Phys 36:R26–R198

    Article  Google Scholar 

  • Buschow KHJ (2006) Handbook of magnetic materials, 16th edn. Elsevier BV, Amsterdam

    Google Scholar 

  • Chang C, Wu Y, Hou S (2009) Preparation and characterization of superparamagnetic nanocomposites of aluminosilicate/silica/magnetite. Colloid Surf A 336:159–166

    Article  CAS  Google Scholar 

  • Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  Google Scholar 

  • Deng Y, Wang C, Hu J, Yang W, Fu S (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloid Surf A 262:87–93

    Article  CAS  Google Scholar 

  • Fajaroh F, Setyawan H, Widiyastuti W, Winardi S (2011) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol, (in press), doi:10.1016/j.apt.2011.04.007

  • Girginova P, Daniel-da-Silva A, Lopes C, Figueira P, Otero M, Amaral V, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interf Sci 345:234–240

    Article  CAS  Google Scholar 

  • Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hong RY, Li JH, Zhang SZ, Li HZ, Zheng Y, Ding JM, Wei DG (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255:3485–3492

    Article  CAS  Google Scholar 

  • Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim Acta A 76:484–489

    Article  Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  CAS  Google Scholar 

  • Nishio K, Ikeda M, Gokon N, Tsubouchi S, Narimatsu H, Mochizuki Y, Sakamoto S, Sandhu A, Abe M, Handa H (2007) Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. J Magn Magn Mater 310:2408–2410

    Article  CAS  Google Scholar 

  • Ozkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktaş B (2009) Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization. J Alloy Compd 472:18–23

    Article  CAS  Google Scholar 

  • Pang KM, Ng S, Chung WK, Wong PK (2007) Removal of pentachlorophenol by adsorption on magnetite-immobilized chitin. Water Air Soil Poll 183:355–365

    Article  CAS  Google Scholar 

  • Sen T, Bruce JI (2009) Mesoporous silica-magnetite nanocomposites: fabrication, characterisation and applications in biosciences. Micropor Mesopor Mat 120:246–251

    Article  CAS  Google Scholar 

  • Setyawan H, Balgis R (2011) Mesoporous silicas prepared from sodium silicate using gelatin templating. Asia-Pac J Chem Eng, (in press) doi:10.1002/apj.593

  • Socrates G (1994) Infrared characteristics group frequencies, 2nd edn. Wiley, New York

    Google Scholar 

  • Souza KC, Ardisson AJD, Sousa AEMB (2009) Study of mesoporous silica/magnetite systems in drug controlled release. J Mater Sci Mater M 20:507–512

    Article  CAS  Google Scholar 

  • Teja AS, Koh P (2009) Synthesis, properties, and application of magnetic iron oxide nanoparticles. Prog Cryst Growth Ch 55:22–45

    Article  CAS  Google Scholar 

  • Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S (2010) Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20:1733–1741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Directorate General of Higher Education (DGHE), the Ministry of National Education, Indonesia, for funding through a Fundamental Research Grant and for the financial support for one of the authors (FF) to obtain a doctorate through BPPS and to visit the Tokyo University of Agriculture and Technology as a research fellow via a Sandwich-Like Program. We also thank Ms. Ratih Y. Utomo and Ms. Kartikasari Sutrisno for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heru Setyawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setyawan, H., Fajaroh, F., Widiyastuti, W. et al. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution. J Nanopart Res 14, 807 (2012). https://doi.org/10.1007/s11051-012-0807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0807-7

Keywords

Navigation