Skip to main content
Log in

Some Properties of Magnetite Nanoparticles Produced Under Different Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Temperature, stirring rate, stirring time, reaction pH, and concentration of precursors during synthesis were found to be crucial in determining the size of the magnetite nanoparticles (NPs) obtained. The relationship between synthetic conditions and the crystal structure, particle size, and size distribution of the NPs was studied. Surface coating of iron oxide NPs was performed in two steps. Magnetite NPs were prepared by coprecipitation then coated with silica by use of a sol–gel process. Saturation magnetization of the magnetite NPs increased from 47.23 to 49.12 emu/g when their size was increased from 8.89 to 9.39 nm. Magnetite NPs in the size range 11–12 nm, coated with silica, are monodispersed and their corresponding saturation magnetization is 40.67 emu/g (11 nm) and 34.65 emu/g (12 nm). The decrease in the saturation magnetization of the coated samples is attributed to the increase in the amount of tetraethyl orthosilicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Liu, J. Dung, and J. Wang, J. Mater. Res. 14, 3355 (1999).

    Article  Google Scholar 

  2. H.O. Jungk and C. Feldmann, J. Mater. Res. 15, 2244 (2000).

    Article  Google Scholar 

  3. K. Woo, J. Hong, S. Choi, H.W. Lee, J.P. Ahn, C.S. Kim, and S.W. Lee, Chem. Mater. 16, 2814 (2004).

    Article  Google Scholar 

  4. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, J. Biosci. Bioeng. 100, 1 (2005).

    Article  Google Scholar 

  5. P. Moroz, S.K. Jones, and B.N. Gray, Int. J. Hypertherm. 18, 267 (2002).

    Article  Google Scholar 

  6. K. Shimizu, A. Ito, J.K. Lee, T. Yoshida, K. Miwa, H. Ishiguro, Y. Numaguchi, T. Murohara, I. Kodama, and H. Honda, Biotechnol. Bioeng. 96, 803 (2007).

    Article  Google Scholar 

  7. Z. Liu, H. Wang, Q. Lu, G. Du, L. Peng, Q. Du, M. Zhang, and K. Yao, J. Magn. Magn. Mater. 283, 258 (2004).

    Article  Google Scholar 

  8. R.A. Andrievski, J. Nanopart. Res. 5, 415 (2003).

    Article  Google Scholar 

  9. M.C. Roco and W.S. Bainbridge, J. Nanopart. Res. 7, 1 (2005).

    Article  Google Scholar 

  10. W.J. Freeman, J. Integr. Neurosci. 4, 407 (2005).

    Article  Google Scholar 

  11. N. Kohler, C. Sun, J. Wang, and M. Zhang, Langmuir 21, 8858 (2005).

    Article  Google Scholar 

  12. Y. Zhang, N. Kohler, and M. Zhang, Biomaterials 23, 1553 (2002).

    Article  Google Scholar 

  13. C. C. Berry, A. S. G. Curtis, J. Phys. D 36, R 198 (2003).

  14. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, J. Phys. D 36, R167 (2003).

    Article  Google Scholar 

  15. P. Tartaj, M.D. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C.J. Serna, J. Phys. D 36, R182 (2003).

    Article  Google Scholar 

  16. V.M. De Paoli, S.H. Lacerda, L. Spinu, B. Ingber, Z. Rosenzweig, and N. Rosenzweig, Langmuir 22, 5894 (2006).

    Article  Google Scholar 

  17. K.S. Kim and J.K. Park, Lab Chip 5, 657 (2005).

    Article  Google Scholar 

  18. K. Liu, L. Zhao, P. Klavins, F.E. Osterloh, and H. Hiramatsu, J. Appl. Phys. 93, 7951 (2003).

    Article  Google Scholar 

  19. S.K. Umar, S.K. Nazir, R. Amin, and K. Faridullah, J. Chem. Soc. Pak. 33, 628 (2011).

    Google Scholar 

  20. I.N. Bhattacharya, J.K. Pradhan, P.K. Gochhayat, and S.C. Das, Int. J. Min. Process. 65, 109 (2002).

    Article  Google Scholar 

  21. S.B. Prabu, L. Karunamoorthy, S. Kathiresan, and B. Mohan, J. Mater. Process. Technol. 171, 268 (2006).

    Article  Google Scholar 

  22. T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).

    Article  Google Scholar 

  23. S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, and L. Xu, Solid State Commun. 29, 485 (2004).

    Article  Google Scholar 

  24. J.P. Jolivet, Metal Oxide Chemistry and Synthesis: From Solutions to Solid State (New York: Wiley, 2000).

    Google Scholar 

  25. D. Kim, Y. Zhang, W. Voit, K. Rao, and M. Muhammad, J. Magn. Magn. Mater. 225, 30 (2001).

  26. Z. Huang and F.J. Tang, J. Colloid Interf. Sci. 281, 432 (2005).

    Article  Google Scholar 

  27. J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. Li, and G. Zou, J. Magn. Magn. Mater. 309, 307 (2007).

    Article  Google Scholar 

  28. S. Sun, H. Zeng, D.B. Robinson, S. Ranoux, P.M. Rice, S.X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Saeed Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U.S., Khattak, N.S., Manan, A. et al. Some Properties of Magnetite Nanoparticles Produced Under Different Conditions. J. Electron. Mater. 44, 303–312 (2015). https://doi.org/10.1007/s11664-014-3467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3467-9

Keywords

Navigation