Skip to main content
Log in

Detection, separation, and quantification of unlabeled silica nanoparticles in biological media using sedimentation field-flow fractionation

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A rapid, high-resolution methodology for characterization, separation, and quantification of unlabeled inorganic nanoparticles extracted from biological media, based on sedimentation field-flow fractionation and light scattering detection is presented. Silica nanoparticles were added to either human endothelial cell lysate or rat lung tissue homogenate and incubated. The nanoparticles were extracted by acid digestion and then separated and characterized by sedimentation field-flow fractionation. Fractions collected at the peak maxima were analyzed by transmission electron microscopy (TEM) to verify the size and shape of the isolated nanoparticles. Using the linear relationship between the particle number and the area under the fractogram, the recoveries of particles from the tissue homogenate and cell lysate were calculated as 25% and 79%, respectively. The presented methodology facilitates detection, separation, size characterization, and quantification of inorganic nanoparticles in biological samples, within one experimental run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barman BN, Giddings JC (1992) Kinetics and properties of colloidal latex aggregates measured by sedimentation field-flow fractionation. Langmuir 8:51–58. doi:10.1021/la00037a012

    Article  CAS  Google Scholar 

  • Beckett R, Zhang J, Giddings JC (1987) Determination of molecular weight distributions of fulvic and humic acids, using flow field-flow fractionation. Environ Sci Technol 21:289–295. doi:10.1021/es00157a010

    Article  CAS  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32. doi:10.1093/toxsci/kfj084

    Article  PubMed  CAS  Google Scholar 

  • Brant J, Lecoanet H, Weisner M (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi:10.1007/s11051-005-4884-8

    Article  CAS  Google Scholar 

  • Caldwell KD, Karaiskakis G, Myers MN, Giddings JC (1981) Characterization of T4D virus by sedimentation field-flow fractionation. J Pharm Sci 70:1350–1353. doi:10.1002/jps.2600701216

    Article  PubMed  CAS  Google Scholar 

  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B (2007) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82:151–157. doi:10.1007/s00204-007-0253-y

    Article  PubMed  Google Scholar 

  • Giddings JC (1988) Field-flow fractionation. Chem Eng News 66:34–45

    CAS  Google Scholar 

  • Giddings JC, Caldwell KD (1989) Field-flow fractionation. In: Rositer BW, Hamilon JF (eds) Physical methods of chemistry. Wiley, New York, pp 867–938

    Google Scholar 

  • Giddings JC, Karaiskakis G, Caldwell KD (1981) Density and particle size of colloidal materials measured by carrier density variations in sedimentation field-flow fractionation. Sep Sci Technol 16:607–618. doi:10.1080/01496398108058119

    Article  CAS  Google Scholar 

  • Giddings JC, Ratanathanawongs SK, Moon MH (1991) Field-flow fractionation: a versatile technology for particle characterization in the size range 0.001 to 100 micrometers. KONA Powder Part 9:200–217

    CAS  Google Scholar 

  • Giddings JC, Ratanathanawongs SK, Barman BN, Moon MH, Liu G, Tjelta BI, Hansen ME (1994) Characterization of colloidal and particulate silica by field-flow fractionation. In: Bergna HE (ed) Colloid chemistry of silica, vol 234. ACS, Washington DC, pp 309–340

    Google Scholar 

  • Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U (2008) Measuring sub nanometer sizes using dynamic light scattering. J Nanopart Res 10:823–829. doi:10.1007/s11051-007-9317-4

    Article  CAS  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. doi:10.1093/toxsci/kfj027

    Article  PubMed  CAS  Google Scholar 

  • Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6. doi:10.1539/joh.50.1

    Article  PubMed  Google Scholar 

  • Lau SH, van Lenthe GH, Peele A, Chang H, Cui H, Feser M, Wenbing Y (2008) Rapid non-invasive tomography of biological samples across length scales using a novel lab-based CT with resolution from mm to 30 nm. ACMM-20 & IUMAS-IV proceedings, Perth, Australia, pp 14–15

  • Lin CL, Miller JD (1993) The development of a PC image-based on-line particle size analyzer. Miner Metall Proc 2:29–35

    Google Scholar 

  • Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256. doi:10.1126/science.280.5367.1253

    Article  PubMed  CAS  Google Scholar 

  • Moon MH, Giddings JC (1992) Extension of sedimentation/steric field-flow fractionation into submicron range: size analysis of 0.2–15 μm metal particles. Anal Chem 64:3029–3037. doi:10.1021/ac00047a027

    Article  CAS  Google Scholar 

  • Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Gehr P, Ochs M (2007) Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 4:11. doi:10.1186/1743-8977-4-11

    Article  PubMed  Google Scholar 

  • Myers MN (1997) Overview of field-flow fractionation. J Microcolumn Sep 9:151–162. doi:10.1002/(SICI)1520-667X(1997)9:3<151::AID-MCS3>3.0.CO;2-0

    Article  CAS  Google Scholar 

  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414. doi:10.1161/hc0402.104118

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740. doi:10.1098/rsta.2000.0680

    Article  ADS  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  PubMed  Google Scholar 

  • Ratanathanawongs Williams SK, Raner GM, Ellis WR Jr, Giddings JC (1997) Separation of protein inclusion bodies from Escherichia coli lysates using sedimentation field-flow fractionation. J Microcolumn Sep 9:233–239. doi:10.1002/(SICI)1520-667X(1997)9:3<233::AID-MCS12>3.0.CO;2-9

    Article  Google Scholar 

  • Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9. doi:10.1186/1743-8977-4-9

    Article  PubMed  Google Scholar 

  • Taylor ET, Garbarino JR (1992) Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation. Anal Chem 64:2036–2041. doi:10.1021/ac00042a005

    Article  CAS  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with oxide micron-sized and nanoparticles compared to soil dusts. Part Fibre Toxicol 4:2

    Article  PubMed  Google Scholar 

  • von der Kammer F, Baborowski M, Tadjiki S, von Tümpling W Jr (2004) Colloidal particles in sediment pore waters: particle size distributions and associated element size distribution in anoxic and re-oxidized samples, obtained by FFF-ICP-MS coupling. Acta Hydrochim Hydrobiol 31:400–410

    Article  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95(1):270–280

    Article  PubMed  Google Scholar 

  • Williams PS, Giddings JC, Beckett R (1987) Fractionating power in sedimentation field-flow fractionation with linear and parabolic field decay programming. J Liq Chromatogr 10:1961–1998

    Article  CAS  Google Scholar 

  • Yonker CR, Caldwell KD, Giddings JC, van Etten JL (1985) Physical characterization of PBCV virus by sedimentation FFF. J Virol Methods 11:145–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Marcus N. Myers for very helpful comments on the draft and Ms. Nancy Chandler at the HSC Core Research Facilities, University of Utah, for help with TEM images of the isolated nanoparticles. The authors are also grateful to Ms. Dorrie Spurlock for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoeleh Assemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadjiki, S., Assemi, S., Deering, C.E. et al. Detection, separation, and quantification of unlabeled silica nanoparticles in biological media using sedimentation field-flow fractionation. J Nanopart Res 11, 981–988 (2009). https://doi.org/10.1007/s11051-008-9560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9560-3

Keywords

Navigation