Skip to main content
Log in

Interactions of Fe atom with single wall armchair SiC nanotubes: an ab initio study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A systematic study of Fe atom encapsulation and adsorption in armchair SiC nanotubes (SiCNT) with diameters in the range of 5.313 to 10.582 Å has been performed using hybrid density functional theory and a finite cluster approximation. A detailed comparison of the binding energies, equilibrium positions, Mulliken charges, and spin magnetic moments of Fe atoms has been performed for three types of nanotubes. The electronic states, HOMO–LUMO gaps, and changes in gaps with respect to the bare nanotube gaps have been investigated as well. Our results show that the properties of SiCNT can be modified by Fe atom encapsulation and adsorption. Binding energies of the encapsulated and adsorbed systems indicate that these structures are stable and show site dependence. For both cases a significant band gap decrease is observed for type 1 nanotubes enabling band gap tailoring. This decrease is not observed for the other two types with a larger diameter. All structures are found to have magnetic ground states with high magnetic moments indicating the possibility of them being used in spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alam KM, Ray AK (2007) A hybrid density functional study of zigzag silicon carbide nanotubes. Nanotechnology 18:495706.1–495706.10

    Google Scholar 

  • Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436.1–035436.10

    Google Scholar 

  • Andriotis AN, Menon M, Froudakis G (2000) Catalytic action of Ni atoms in the formation of carbon nanotubes: a molecular dynamics study. Phys Rev Lett 85:3193–3196. doi:10.1103/PhysRevLett.85.3193

    Article  PubMed  ADS  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  • Becke AD (1998) A new inhomogeneity parameter in density-functional theory. J Chem Phys 109:2092–2098. doi:10.1063/1.476722

    Article  ADS  CAS  Google Scholar 

  • Borowiak-Palen E, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T, Kalenczuk RJ (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102.1–056102.3

    Google Scholar 

  • Dag S, Durgun E, Ciraci S (2004) High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes. Phys Rev B 69:121407.1–121407.4(R)

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Avouris PH (2001) Carbon nanotubes-synthesis, structure, properties and applications, topics in applied physics, vol 80. Springer, Berlin

    Google Scholar 

  • Dunning TH Jr, Hay PJ (1976) Modern theoretical chemistry. Plenum, New York, pp 1–28

    Google Scholar 

  • Durgun E, Dag S, Bagci VMK, Gülseren O, Yildirim T, Ciraci S (2003) Systematic study of adsorption of single atoms on a carbon nanotube. Phys Rev B 67:201401.1–201401.4(R)

    Google Scholar 

  • Durgun E, Dag S, Ciraci S, Gülseren O (2004) Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J Phys Chem B 108:575–582. doi:10.1021/jp0358578

    Article  CAS  Google Scholar 

  • Fagan SB, Mota R, da Silva AJR, Fazzio A (2003) Ab initio study of an iron atom interacting with single-wall carbon nanotubes. Phys Rev B 67:205414.1–205414.5

    Google Scholar 

  • Frisch MJ (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi:10.1063/1.448799

    Article  ADS  CAS  Google Scholar 

  • He T, Zhao M, Xia Y, Li W, Song C, Lin X, Liu X, Mei L (2006) Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx [x = 1,2] groups. J Chem Phys 125:194710.1–194710.5

    Google Scholar 

  • Hehre WJ, Schleyer RadomL, PvR PopleJA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192. doi:10.1063/1.1760074

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86:1733–1736. doi:10.1103/PhysRevLett.86.1733

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hu JQ, Bando Y, Zhan JH, Goberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets) and SiC nanotubes (and tubes). Appl Phys Lett 85:2932–2934. doi:10.1063/1.1801168

    Article  ADS  CAS  Google Scholar 

  • Huczko A, Bystrzejewski M, Lange H, Fabianowska A, Cudzilo S, Panas A, Szala M (2005) Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J Phys Chem B 109:16244–16251. doi:10.1021/jp050837m

    Article  PubMed  CAS  Google Scholar 

  • Huda MN, Ray AK (2004) Carbon dimer in silicon cage: A class of highly stable silicon carbide clusters. Phys Rev A 69:011201.1–011201.4 (R)

    Google Scholar 

  • Huda MN, Ray AK (2008) Evolution of SiC nanocluster from carbon fullerene: a density functional theoretic study. Chem Phys Lett 457:124–129. doi:10.1016/j.cplett.2008.03.057

    Article  ADS  CAS  Google Scholar 

  • Huda MN, Kleinman L, Ray AK (2007) Silicon carbide nanostructures to nanotubes. J Comput Theory Nanosci 4:739–744

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  ADS  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605. doi:10.1038/363603a0

    Article  ADS  CAS  Google Scholar 

  • Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai H (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev Lett 92:106804.1–106804.4

    Google Scholar 

  • Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterization of medium surface area silicon carbide nanotubes. Carbon 41:2131–2139. doi:10.1016/S0008-6223(03)00239-2

    Article  CAS  Google Scholar 

  • Kong K, Han S, Ihm J (1999) Development of an energy barrier at the metal-chain-metallic-carbon-nanotube nanocontact. Phys Rev B 60:6074–6079. doi:10.1103/PhysRevB.60.6074

    Article  ADS  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  ADS  CAS  Google Scholar 

  • Lee YH, Kim SG, Tomanek D (1997) Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys Rev Lett 78:2393–2396. doi:10.1103/PhysRevLett.78.2393

    Article  ADS  CAS  Google Scholar 

  • Li F, Xia Y-Y, Zhao M-W, Liu X-D, Huang B-D, Yang Z-H, Ji Y-J, Song C (2005) Density-functional theory calculations of XH3-decorated SiC nanotubes (X = {C, Si}): Structures, energetics, and electronic structures. J Appl Phys 97:104311.1–104311.4

    Google Scholar 

  • Mao Y-L, Yan X-H, Xiao Y (2005) First-principles study of transition-metal-doped single-walled carbon nanotubes. Nanotechnology 16:3092–3096. doi:10.1088/0957-4484/16/12/061

    Article  ADS  CAS  Google Scholar 

  • Mavrandonakis G, Froudakis E, Schnell M, Muhlhäusert M (2003) From pure carbon to silicon-carbon nanotubes: an ab initio study. Nano Lett 3:1481–1484. doi:10.1021/nl0343250

    Article  ADS  CAS  Google Scholar 

  • Meng T, Wang C-Y, Wang S-Y (2007) First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chem Phys Lett 437:224–228. doi:10.1016/j.cplett.2007.02.024

    Article  ADS  CAS  Google Scholar 

  • Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322.1–115322.4

    Google Scholar 

  • Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586–588. doi:10.1063/1.1445474

    Article  ADS  CAS  Google Scholar 

  • Mukherjee S, Ray AK (2008) An ab initio study of molecular hydrogen interaction with SiC nanotube—a precursor to hydrogen storage. J Comput Theory Nanosci 5:1210–1219. doi:10.1166/jctn.2008.003

    Article  CAS  Google Scholar 

  • Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342:397–401. doi:10.1016/S0009-2614(01)00616-9

    Article  ADS  CAS  Google Scholar 

  • Nhut JM, Vieira R, Pesant L, Tessonnier J-P, Keller N, Ehret G, Pham-Huu C, Ledoux MJ (2002) Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catal Today 79:11–32. doi:10.1016/S0920-5861(02)00206-7

    Article  Google Scholar 

  • Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694. doi:10.1103/PhysRevLett.49.1691

    Article  ADS  CAS  Google Scholar 

  • Pham-Huu C, Keller N, Ehret GC, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410. doi:10.1006/jcat.2001.3216

    Article  CAS  Google Scholar 

  • Ray AK, Huda MN (2006) Silicon-carbide nano clusters: a pathway to future nano–electronics. Review article. J Comput Theory Nanosci 3:315–341

    CAS  Google Scholar 

  • Roco MC, Williams RS, Alivisatos P (2000) Nanotechnology research directions: IWGN workshop report—vision for nanotechnology in the next decade. Springer, Berlin

    Google Scholar 

  • Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Magnetism in transition-metal-doped silicon nanotubes. Phys Rev Lett 91:146802.1–146802.4

    Google Scholar 

  • Srinivasan A, Huda MN, Ray AK (2005) Silicon-carbon fullerene-like nanostructures: an ab initio study on the stability of Si60C2n (n = 1,2) clusters. Phys Rev A 72:063201.1–063201.10

    Google Scholar 

  • Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T, Teo B-T (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471. doi:10.1021/ja0273997

    Article  PubMed  CAS  Google Scholar 

  • Taguchi T, Igawa N, Yamamoto H, Shamoto S, Jitsukawa S (2005a) Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes. Phys E Amst 28:431–438

    CAS  Google Scholar 

  • Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005b) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461. doi:10.1111/j.1551-2916.2005.00066.x

    Article  CAS  Google Scholar 

  • Wind SJ, Appenzeller J, Avouris P (2003) Lateral scaling in carbon-nanotube field-effect transistors. Phys Rev Lett 91:58301.1–58301.4

    Google Scholar 

  • Yagi Y, Briere TM, Sluiter MHF, Kumar V, Farajian AA, Kawazoe Y (2004) Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study. Phys Rev B 69:075414.1–075414.9

    Google Scholar 

  • Young DC (2001) Computational chemistry. Wiley, New York

    Book  Google Scholar 

  • Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77:3015–3017. doi:10.1063/1.1324731

    Article  ADS  CAS  Google Scholar 

  • Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem Phys Lett 331:35–41. doi:10.1016/S0009-2614(00)01162-3

    Article  ADS  CAS  Google Scholar 

  • Zhao J-X, Ding Y-H (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density-functional study. J Phys Chem C 112:2558–2564. doi:10.1021/jp073722m

    Article  CAS  Google Scholar 

  • Zhao MW, Xia YY, Li F, Zhang RQ, Lee S-T (2005) Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys Rev B 71:085312.1–085312.6

    Google Scholar 

  • Zhao MW, Xia YY, Zhang RQ, Lee S-T (2005) Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. J Chem Phys 122:214707.1–214707.5

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial support from the Welch Foundation, Houston, Texas (Grant No. Y-1525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, K.M., Ray, A.K. Interactions of Fe atom with single wall armchair SiC nanotubes: an ab initio study. J Nanopart Res 11, 1405–1420 (2009). https://doi.org/10.1007/s11051-008-9529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9529-2

Keywords

Navigation