Skip to main content
Log in

Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RNIP:

Reactive nano-scale iron particles

RNIP-10AP:

Reactive nano-scale iron particles coated with biodegradable polymer

DLVO:

Derjaguin–Landau–Verwey–Overbeek

DLS:

Dynamic light scattering

References

  • Bunn RA, Magelky RD et al (2002) Mobilization of natural colloids from an iron oxide coated sand aquifer: effect of pH and ionic strength. Environ Sci Technol 36:314–322

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Ko C-H et al (2001) Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport. Colloids Surf A 191:3–16

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE et al (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523

    Article  PubMed  CAS  Google Scholar 

  • Chen KL, Mylon SE et al (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23:5920–5928

    Article  PubMed  CAS  Google Scholar 

  • Dietric PG, Lerche KH et al (1997) The characterization of silica microparticles by electrophoretic mobility measurements. Chromatographia 44(7–8):362–366

    Article  Google Scholar 

  • Einarson MB, Berg JC (1993) Electrosteric stabilization of colloidal latex dispersions. J Colloid Interface Sci 155(1):165–172

    Article  CAS  Google Scholar 

  • Elimelech M, O’Melia CR (1990) Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6(6):1153–1163

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation. Butterworth-Heinemann

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  PubMed  CAS  Google Scholar 

  • Fritz G, Schadler V et al (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18:6381–6390

    Article  CAS  Google Scholar 

  • Gregory J (1981) Approximate expressions for retarded Vanderwaals interaction. J Colloid Interface Sci 83(1):138–145

    Article  CAS  MathSciNet  Google Scholar 

  • He F, Zhao D et al (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34

    Article  CAS  Google Scholar 

  • Healy TW, White LR (1978) Ionizable surface group models of aqueous interfaces. Adv Colloid Interface Sci 9(4):303–345

    Article  CAS  Google Scholar 

  • Hydutsky BW, Mack EJ et al (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424

    Article  PubMed  CAS  Google Scholar 

  • Johnson PR, Sun N et al (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293

    Article  CAS  Google Scholar 

  • Kamiyama Y, Israelachvili J (1992) Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte. Macromolecules 25(19):5081–5088

    Article  CAS  ADS  Google Scholar 

  • Kanel S, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55:157–162

    PubMed  CAS  Google Scholar 

  • Kanel SR, Nepal D et al (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9(5):725–735

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR et al (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42(3):896–900

    Article  PubMed  CAS  Google Scholar 

  • Ko C-H, Elimelech M (2000) The shadow effect in colloid transport and deposition dynamics in granular porous media: measurements and mechanisms. Environ Sci Technol 34:3681–3689

    Article  CAS  Google Scholar 

  • Ko C-H, Bhattacharjee S et al (2000) The coupled influence of ionic strength, particle size, and flow velocity on the RSA dynamic blocking function during colloid deposition in a packed bed of spherical collectors. J Colloid Interface Sci 229:554–567

    Article  PubMed  CAS  Google Scholar 

  • Kosmulski M, Maczka E et al (2002) Multiinstrument study of the electrophoretic mobility of quartz. J Colloid Interface Sci 250:99–103

    Article  PubMed  CAS  Google Scholar 

  • Liu YQ, Majetich SA et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345

    Article  PubMed  CAS  Google Scholar 

  • Ma XD, Pawlik M (2006) Adsorption of guar gum onto quartz from dilute mixed electrolyte solutions. J Colloid Interface Sci 298(2):609–614

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface. Vadose Zone J 3:326–337

    Article  CAS  Google Scholar 

  • Napper DH (1977) Steric stabilization. J Colloid Interface Sci 58(2):390–407

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Phenrat T, Saleh N et al (2007a) Stabilization of aqueous zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N et al (2007b) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290

    Article  PubMed  CAS  Google Scholar 

  • Quinn J, Geiger C et al (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Ryan J, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A 107:1–56

    Article  CAS  Google Scholar 

  • Ryan J, Elimelech M et al (1999) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol 33:63–73

    Article  CAS  Google Scholar 

  • Ryan J, Elimelech M et al (2000) Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ Sci Technol 34:2000–2005

    Article  CAS  Google Scholar 

  • Saleh N (2007) An assessment of novel polymeric coatings to enhance transport and in situ targeting of nanoiron for remediation of non-aqueous phase liquids (NAPLs). In: Civil and environmental engineering. Carnegie Mellon University, Pittsburgh, PA, p 274

  • Saleh N, Sirk K et al (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW et al (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193

    Article  CAS  Google Scholar 

  • Simonet F, Garnier C et al (2002) Description of the thermodynamic incompatibility of the guar-dextran aqueous two-phase system by light scattering. Carbohydr Polym 47(4):313–321

    Article  CAS  Google Scholar 

  • Tiraferri A, Chen KL et al (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. doi:10.1016/j.jcis.2008.04.064

  • Tufenkji N, Elimelech M (2004a) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38(2):529–536

    Article  PubMed  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004b) Deviation from classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20:10818–10828

    Article  PubMed  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2005) Spatial distribution of cryptosporidium oocysts in porous media: evidence for dual mode deposition. Environ Sci Technol 39:3620–3629

    Article  PubMed  CAS  Google Scholar 

  • Vincent B, Edwards J et al (1986) Depletion flocculation in dispersions of sterically-stabilized particles (soft spheres). Colloids Surf 18(2–4):261–281

    Article  CAS  Google Scholar 

  • Yang GCC, Tu H-C et al (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Zhang WX (2003a) In situ remediation with nanoscale iron particles. Abstr Pap Am Chem Soc 225:U961–U962

    Google Scholar 

  • Zhang WX (2003b) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Project CIPE-C30 funded by Regione Piemonte, Italy. The authors wish to thank Dr. Menachem Elimelech at Yale University, New Haven, CT, Dr. Nathalie Tufenkji at McGill University, Montréal, Canada and Tim Schinner for Alberto’s training on column experiments and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajandrea Sethi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiraferri, A., Sethi, R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11, 635–645 (2009). https://doi.org/10.1007/s11051-008-9405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9405-0

Keywords

Navigation