Skip to main content
Log in

Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles were covalently anchored onto acid-treated multi-walled carbon nanotubes (MWNTs) through a nanocoating-hydrothermal process to obtain TiO2-MWNTs nanocomposites. The composition and structural properties of the nanocomposites were characterized by XRD, BET, TG, TEM, HRTEM, EDX, XPS, and FTIR, and the formation of ester-bond linkage between TiO2 nanoparticles and MWNTs was demonstrated. The enhanced photocatalytic activity of TiO2-MWNTs nanocomposites was probed by photodegradation reaction of methylene blue under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caruso R.A., M. Antonietti 2001. Sol-gel nanocoating: an approach to the preparation of structured materials. Chem. Mater. 13:3272–3282

    Article  CAS  Google Scholar 

  2. Chen C., X. Li, W. Ma, J. Zhao 2002. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 106:318–324

    Article  CAS  Google Scholar 

  3. Chen D., D. Yang, Q. Wang, Z. Jiang 2006. Effects of boron doping on photocatalytic activity and microstructure of Titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45:4110–4116

    Article  CAS  Google Scholar 

  4. Fujishima A., T.N. Rao, D.A. Tryk 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1:1–21

    Article  CAS  Google Scholar 

  5. Hoffmann M.R., S.T. Martin, W. Choi, D.W. Bahnemann 1995. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95:69–96

    Article  CAS  Google Scholar 

  6. Huang Q., L. Gao 2003. Immobilization of rutile TiO2 on multiwalled carbon nanotubes. J. Mater. Chem. 13:1517–1519

    Article  CAS  Google Scholar 

  7. Jitiannu A., T. Cacciaguerra, R. Benoit, S. Delpeux, F. Béguin, S. Bonnamy 2004. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon 42:1147–1151

    Article  Google Scholar 

  8. Kedem S., J. Schmidt, Y. Paz, Y. Cohen 2005. Composite polymer nanofibers with carbon nanotubes and Titanium dioxide particles. Langmuir 21:5600–5604

    Article  CAS  Google Scholar 

  9. Konstantinou I.K., T.A. Albanis 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B: Environ. 49:1–14

    Article  CAS  Google Scholar 

  10. Lee S.-W., S.W. Sigmund, 2003. Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem.Commun. 6, 780–781

    Google Scholar 

  11. Lettmann C., K. Hildenbrand, H. Kisch, W. Macyk, W.F. Maier 2001. Visible light photodegradation of 4-chlorophenol with a coke-containing Titanium dioxide photocatalyst. Appl. Catal. B:Environ. 32:215–227

    Article  CAS  Google Scholar 

  12. Li X., J. Niu, J. Zhang, H. Li, Z. Liu 2003. Labeling the defects of single-walled carbon nanotubes using Titanium dioxide nanoparticles. J. Phys. Chem. B 107:2453–2458

    Article  CAS  Google Scholar 

  13. Linsebigler A.L., G. Lu, J.T. Yates 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:735–758

    Article  CAS  Google Scholar 

  14. Nagaveni K., M.S. Hegde, N. Ravishankar, G.N. Subbanna, M. Giridhar 2004. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907

    Article  CAS  Google Scholar 

  15. Schattka J.H., D.G. Shchukin, J. Jia, M. Antonietti, R.A. Caruso 2002. Photocatalytic activities of porous Titania and Titania/Zirconia structures formed by using a polymer gel templating technique. Chem. Mater. 14:5103–5108

    Article  CAS  Google Scholar 

  16. Shchukin D.G., J.H. Schattka, M. Antonietti, R.A. Caruso 2003. Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J. Phys. Chem. B 107:952–957

    Article  CAS  Google Scholar 

  17. Shchukin D.G., R.A. Caruso 2003. Inorganic macroporous films from preformed nanoparticles and membrane templates: synthesis and investigation of photocatalytic and photoelectrochemical properties. Adv. Funct. Mater. 13:789–794

    Article  CAS  Google Scholar 

  18. Silva C.G., J.L. Faria 2003. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A: Chem. 155:133–143

    Article  Google Scholar 

  19. Soler-Illia G.J. de A.A., A. Louis, C. Sanchez 2002. Synthesis and characterization of mesostructured Titania-based materials through evaporation-induced self-assembly. Chem. Mater. 14:750–759

    Article  Google Scholar 

  20. Sun J., M. Iwasa, L. Gao, Q.H. Zhang 2004. Single-walled carbon nanotubes coated with titania nanoparticles. Carbon 42:885–901

    Article  Google Scholar 

  21. Taguchi A., F. Schüth 2005. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 77:1–45

    Article  CAS  Google Scholar 

  22. Takeda N., T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama 1995. Effect of inert supports for Titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem. 99:9986–9991

    Article  CAS  Google Scholar 

  23. Tryba B., A.W. Morawske, M. Inagaki 2003. Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B: Environ. 41:427–433

    Article  CAS  Google Scholar 

  24. Wang W.D., P. Serp, P. Kalck, J.L. Faria 2005. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Appl. Catal. B: Environ. 56:305–312

    Article  CAS  Google Scholar 

  25. Yu J.C., J. Yu, W. Ho, Z. Jiang, L. Zhang 2002. Effects of F-doping on the photocatalytic activity and micro-structures of nanocrystalline TiO2 Powders. Chem. Mater. 14:3808–3816

    Article  CAS  Google Scholar 

  26. Yu Y., J.C. Yu, C.-Y. Chan, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong 2005. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal. B: Environ. 61:1–11

    Article  CAS  Google Scholar 

  27. Yu Y., J.C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong 2005. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A: Gen. 289:186–196

    Article  CAS  Google Scholar 

  28. Zhang H., J.F. Banfield 2000. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. 104:3481–3487

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for the Cross-Century Talent Raising Program of Ministry of Education of China and Changjiang Scholars and Innovative Research Teams in University (PCSIRT). We would like to thank Professor Fei He for their kind assistance in XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Yang, D., Chen, D. et al. Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. J Nanopart Res 9, 1087–1096 (2007). https://doi.org/10.1007/s11051-006-9199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9199-x

Keywords

Navigation