Skip to main content
Log in

Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the capabilities of a generalized kinematic (Newton’s like) restitution law for the modeling of a planar rigid block that impacts a rigid ground. This kinematic restitution law is based on a specific state transformation of the Lagrangian dynamics, using the kinetic metric on the configuration space. It allows one to easily derive a restitution rule for multiple impacts. The relationships with the classical angular velocity restitution coefficient r for rocking motion are examined in detail. In particular, it is shown that r has the interpretation of a tangential restitution coefficient. The case when Coulomb’s friction is introduced at the contact impulse level together with an angular velocity restitution is analyzed. A simple chain of aligned balls is also examined, illustrating that the impact law applies to various types of multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The kinetic metric is the metric defined with the mass matrix M(q)=M T(q)>0, such that for two vectors x and y the inner product is x T M(q)y.

  2. The kinetic angle is obtained after substraction from π because the normal vectors point outside the admissible domain of the configuration space.

References

  1. Acary, V., Brogliato, B.: Numerical Simulation for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Heidelberg (2008)

    Google Scholar 

  2. Andreaus, U., Casini, P.: On the rocking-uplifting motion of a rigid block in free and forced motion: influence of sliding and bouncing. Acta Mech. 138, 219–241 (1999)

    Article  MATH  Google Scholar 

  3. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Appl. 154, 199–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, D.S.: Matrix, Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  5. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brach, R.M.: Mechanical Impact Dynamics. Wiley, New York (1991)

    Google Scholar 

  7. Brach, R.M.: Impact coefficients and tangential impacts. J. Appl. Mech. 64, 1014–1017 (1997)

    Article  MATH  Google Scholar 

  8. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  9. Brogliato, B.: Nonsmooth Impact Mechanics. LNCIS, vol. 220. Springer, London (1996)

    MATH  Google Scholar 

  10. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1998)

    Article  Google Scholar 

  11. Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometries. Multibody Syst. Dyn. 23, 99–120 (2010)

    Article  MATH  Google Scholar 

  12. Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. 60, 575–595 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 29, 37–54 (2009)

    Article  MathSciNet  Google Scholar 

  14. Dzonou, R., Monteiro-Marques, M.D.P.: A sweeping process approach to inelastic contact problems with general inertia operators. Eur. J. Mech. A, Solids 26(3), 474–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fielder, W.T., Virgin, L.N., Plaut, R.H.: Experiments and simulation of overturning of an asymmetric rocking block on an oscillating foundation. Eur. J. Mech. A, Solids 16(5), 905–923 (1997)

    MATH  Google Scholar 

  16. Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  18. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frémond, M.: Collisions. Istituto Poligrafico e Zecca Dello Stato s.p.a., Roma (2007)

    Google Scholar 

  20. Frémond, M.: Rigid bodies collisions. Phys. Lett. A 204, 33–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gale, D.: An indeterminate problem in classical mechanics. Am. Math. Mon. 59(5), 291–295 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glocker, Ch.: Concepts for modeling impacts without friction. Acta Mech. 168, 1–19 (2004)

    Article  MATH  Google Scholar 

  23. Glocker, C.: An introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids. CISM Courses and Lectures, vol. 485, pp. 45–102. Springer, Wien (2006)

    Chapter  Google Scholar 

  24. Glocker, C., Aeberhard, U.: The geometry of Newton’s cradle. In: Alart, P., Maisonneuve, O., Rockafellar, R.T. (eds.) Nonsmooth Mechanics and Analysis. Theoretical and Numerical Advances. AMMA, vol. 12, pp. 185–194. Springer, Berlin (2006)

    Chapter  Google Scholar 

  25. He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. E 75, 036710 (2007)

    Article  Google Scholar 

  26. Heidenreich, B.: Small and half-scale experimental studies of rockfall impacts on sandy slopes. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, section de Génie Civil (CH), Thèse no 3059 (2004)

  27. Housner, G.W.: The behaviour of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)

    Google Scholar 

  28. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  29. Leine, R.I., van de Wouw, N.: Stability properties of equilibrium sets of non-linear mechanical systems with dry friction and impact. Nonlinear Dyn. 51, 551–583 (2008)

    Article  MATH  Google Scholar 

  30. Lipscombe, P.R., Pellegrino, S.: Free rocking of prismatic blocks. J. Eng. Mech. 119(7), 1387–1410 (1993)

    Article  Google Scholar 

  31. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems: Part I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, C., Zhao, Z., Brogliato, B.: Energy dissipation and dispersion effects in a granular media. Phys. Rev. E 78(3), 031307 (2008)

    Article  MathSciNet  Google Scholar 

  33. Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. INRIA Research Report 6718, November 2008. http://hal.inria.fr/inria-00337482/fr/

  34. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems: Part II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lun, C.K.K., Bent, A.A.: Computer simulation of simple shear flow of inelastic, frictional spheres. In: Thortin (ed.) Powders and Grains, vol. 93, pp. 301–306 (1993)

    Google Scholar 

  36. Milne, J.: Seismic experiments. Trans. Seism. Soc. Jpn. 8, 1–82 (1885)

    Google Scholar 

  37. Modarres Najafabadi, S.A., Kövecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn. 3, 041008 (2008)

    Article  Google Scholar 

  38. Modarres Najafabadi, S.A., Kövecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monteiro-Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications, vol. 9. Birkhauser, Basel (1993)

    MATH  Google Scholar 

  40. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4), 93–114 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. 15(1), 1–41 (2005)

    Article  MathSciNet  Google Scholar 

  42. Payr, M., Glocker, C., Bösch, C.: Experimental treatment of multiple contact collisions. In: Euromech Conference ENOC, Eindhoven, 7–12 August, pp. 450–459 (2005)

    Google Scholar 

  43. Payr, M.: An experimental and theoretical study of perfect multiple contact collisions in linear chains of bodies. PhD thesis ETH Zurich, No. 17808, ETH E-Collection, 2008, 171 pages. Available at http://www.zfm.ethz.ch/e/dynamics/payr_collisions.htm

  44. Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41, 361–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pena, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthquake Eng. Struct. Dyn. 36, 2383–2399 (2007)

    Article  Google Scholar 

  46. Perry, J.: Note on the rocking of a column. Trans. Seism. Soc. Jpn. 3, 103–106 (1881)

    Google Scholar 

  47. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley Series in Nonlinear Science (1996)

    Book  MATH  Google Scholar 

  48. Prieto, F., Lourenço, P.B.: On the rocking behavior of rigid objects. Meccanica 40, 121–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  51. Stronge, W.J., James, R., Ravani, B.: Oblique impact with friction and tangential compliance. Philos. Trans. R. Soc. Lond. A 359, 1–19 (2001)

    Article  MathSciNet  Google Scholar 

  52. Taniguchi, T.: Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion. Earthquake Eng. Struct. Dyn. 31, 1481–1500 (2002)

    Article  Google Scholar 

  53. Walton, O.R.: Numerical simulation of inelastic, frictional particle-particle interactions. In: Roco, M.C. (ed.) Particulate Two-Phase Flow. Butterworth/Heinemann, Stoneham (1992)

    Google Scholar 

  54. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 3323–3339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yim, C.S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthquake Eng. Struct. Dyn. 8(6), 565–587 (1980)

    Article  Google Scholar 

  56. Zhang, H., Brogliato, B., Liu, C.: Study of the planar rocking-block dynamics without and with friction: critical kinetic angles. Submitted

  57. Zhang, H., Brogliato, B.: The planar rocking block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. INRIA Research Report RR-7580, March 2011. http://hal.inria.fr/inria-00579231/en/

  58. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed with the support of the NSFC/ANR project Multiple Impact, ANR-08-BLAN-0321-01. H. Zhang was funded by China Scholarship Council No. 2009601276 and by ANR project Multiple Impact ANR-08-BLAN-0321-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogliato, B., Zhang, H. & Liu, C. Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst Dyn 27, 351–382 (2012). https://doi.org/10.1007/s11044-012-9301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9301-3

Keywords

Navigation