Skip to main content
Log in

Determination of the properties of viscoelastic materials using spherical nanoindentation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The article is devoted to determining the properties of linearly viscoelastic isotropic materials from the experiment on the introduction of a spherical indenter at a constant-rate displacement in a viscoelastic sample. The results are based on the Lee–Radok (J. Appl. Mech. 27:438–444, 1960) solution of the viscoelastic contact problem. An exact formula is obtained for calculation of the relaxation function using indentation load–displacement data. To illustrate the application of this formula, it is used to find the relaxation function of polymethyl methacrylate (PMMA). The relaxation function found in the article is compared with data measured in a conventional test to evaluate the suitability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cakmac, U., Schöberl, T., Major, Z.: Nanoindentation of polymers. Meccanica 47(3), 707–718 (2012). doi:10.1007/s11012-011-9481-6

    Article  Google Scholar 

  • Chen, D.L., Yang, P.F., Lai, Y.S.: A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation. Microelectron. Reliab. 52, 541–558 (2012)

    Article  Google Scholar 

  • Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci. D Polym. Phys. 38, 10–22 (2000)

    Article  Google Scholar 

  • Cheng, L., Xia, X., Scriven, L.E., Gerberich, W.W.: Spherical tip indentation of viscoelastic material. Mech. Mater. 37, 213–226 (2005)

    Article  Google Scholar 

  • Demidovich, B.P.: A Collection of Tasks and Exercises in Mathematical Analysis, 9th edn. Nauka, Moscow (1997)

    Google Scholar 

  • Díez-Pascual, A.M., Gómez-Fatou, M.A., Ania, F., Flores, A.: Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 67, 1–94 (2015)

    Article  Google Scholar 

  • Huang, G., Lu, H.: Measurement of Young’s relaxation modulus using nanoindentation. Mech. Time-Depend. Mater. 10, 229–243 (2006)

    Article  MathSciNet  Google Scholar 

  • Huang, G., Daphalapurkar, N.P., Gan, R.Z., Lu, H.: A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J. Biomech. Eng. 130(1) (2008). doi:10.1115/1.2838034

  • Il’yushin, A.A., Pobedrya, B.E.: Fundamentals of the Mathematical Theory of Thermoelasticity. Nauka, Moscow (1970)

    Google Scholar 

  • Kucuk, Y., Mollamahmutoglu, C., Wang, Y., Lu, H.: Nonlinearly viscoelastic nanoindentation of PMMA under a spherical tip. Exp. Mech. 53(5), 731–742 (2013)

    Article  Google Scholar 

  • Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, H., Huang, G.: Measurement of two independent viscoelastic functions using nanoindentation. Exp. Mech. 47, 87–98 (2007)

    Article  Google Scholar 

  • Lu, H., Zhang, X., Knauss, W.G.: Uniaxial, shear and Poisson relaxation and their conversions to bulk relaxation: studies on poly(metyl methacrylate). Polym. Eng. Sci. 37, 1053–1064 (1997)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Vismanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  • Lu, H., Huang, G., Wang, B.: Measurement of two independent viscoelastic functions using nanoindentation. In: SEM Ann. Conf. (2005)

    Google Scholar 

  • Mattice, J.M., Lau, A.G., Oyen, M.L., Kent, R.W.: Spherical indentation load–relaxation of soft biological tissue. J. Mater. Res. 21(8), 2003–2010 (2006)

    Article  Google Scholar 

  • Nikonov, A., Davies, R.A., Emri, I.: The determination of creep and relaxation functions from a single experiment. J. Rheol. 49, 1193–1211 (2005)

    Article  Google Scholar 

  • Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094–2100 (2005)

    Article  Google Scholar 

  • Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations, 2nd edn. Chapman & Hall/CRC Press, Boca Raton–London (2008)

    Book  MATH  Google Scholar 

  • Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Ting, T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966)

    Article  MATH  Google Scholar 

  • Tschoeg, N.W., Knauss, W.G., Emry, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  • Tweedie, C.A., Van Vliet, K.J.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576–1589 (2006)

    Article  Google Scholar 

  • VanLandingham, M.R., Chan, N.-K., Drzal, P.L., White, C.C., Chang, S.-H.: Viscoelastic characterization of polymers using instrumented indentation—I. Quasi-static testing. J. Polym. Sci. B Polym. Phys. 43, 1794–1811 (2005)

    Article  Google Scholar 

  • Zhou, Z., Lu, H.: On the measurements of viscoelastic functions of a sphere by nanoindentation. Mech. Time-Depend. Mater. 14, 1–24 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Martynova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynova, E. Determination of the properties of viscoelastic materials using spherical nanoindentation. Mech Time-Depend Mater 20, 85–93 (2016). https://doi.org/10.1007/s11043-015-9285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-015-9285-5

Keywords

Navigation