Skip to main content

Advertisement

Log in

Quality of Protection in Cloud-Assisted Cognitive Machine-to-Machine Communications for Industrial Systems

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Cloud-assisted cognitive machine-to-machine co- mmunications (CM2M) is a new paradigm to improve the mobile services, which have drawn considerable attention in industry and academia. In this paper, we consider the quality of protection (QoP) of information transmission in cloud-assisted CM2M communications. In such an environment, the secondary M2M system intends to share the primary spectrum on the condition that the secondary transmitter (ST) has to relay the primary message. However, the ST is a low-energy device which adopts the energy harvesting technique to power itself. In particular, we focus on secure information transmission for the primary system when the secondary users (SUs) are the potential eavesdroppers. We aim to jointly design power splitting and secure beamforming to maximize the secondary M2M system data rate subject to the secrecy requirement of the primary system and the ST power constraint. To solve this non-convex problem, we propose a computationally efficient two-stage optimization approach. Simulation results demonstrate that our proposed scheme achieves a significant transmission rate of the secondary M2M system while provides a high secrecy rate for the primary system compared to the scheme without energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitehead S (2004) Adopting wireless machine-to-machine technology. IEE Computing and Control Engineering J 23(2):201–20

    Google Scholar 

  2. Zhang Y, et al. (2012) Cognitive machine-to-machine communciations: Visions and potentials for the smart grid. IEEE Netw 26(3):6–13

    Article  Google Scholar 

  3. Haykin S (2005) Cognitive radio: Brain-empowered wireless communciations. IEEE JSAC 23(2):201–220

    Google Scholar 

  4. Ding JF, Yu R, Zhang Y, Gjessing S, Tsang DHK (2015) Service provider competition and cooperation in cloud-based software defined wireless networks. IEEE Commun Mag 53(11):134–140

    Article  Google Scholar 

  5. Qiu M, Ming Z, Li J, Gai K, Zong Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans Comput 64(12):3528–3540

    Article  MathSciNet  Google Scholar 

  6. Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Technol 16(2):317–323

    Google Scholar 

  7. Wu G, Talwar S, Johnsson K, Himayat N, Johnson K (2011) M2m:from mobile to embedded Internet. IEEE Commun Mag 49(4):36–43

    Article  Google Scholar 

  8. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  9. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Security 10(3):507–518

    Article  Google Scholar 

  10. Guo P, Wang J, Li B, Lee S (2014) A variable threshold value authentication architecture for wireless mesh networks. J Internet Technol 15(6):929–936

    Google Scholar 

  11. Li Y, Dai W, Ming Z, Qiu M (2015) Privacy protection for preventing data over-collection in smart city. IEEE Trans Comput 65(5):1339–1350

    Article  MathSciNet  Google Scholar 

  12. Sadek AK, Liu KJR, Ephremides A (2007) Cognitive multiple access via coopeation: Protocol design and stability analysis. IEEE Trans Inf Theory 53(10):3677–3696

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu B, Sheng V (2016) A robust regularization path algorithm for v-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

    Google Scholar 

  14. Shen J, Tan H, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178

    Google Scholar 

  15. Gu B, Sheng V, Tay K, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Sysy 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  16. Gu B, Sun X, Sheng V (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Sysy. doi:10.1109/TNNLS.2016.2544779

    Google Scholar 

  17. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(1):231–246

    Article  Google Scholar 

  18. Zhou X, Song L, Zhang Y (2013) Physical layer security in wireless communications. CRC Press

  19. Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352

    Article  MathSciNet  Google Scholar 

  20. Fu Z, Ren K, Shu J, Sun X, Huang F (2015) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2506573

    Google Scholar 

  21. Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98-B(1):190–200

    Article  Google Scholar 

  22. Stanojev I, Yener A (2013) Improving secrecy rate via spectrum leasing for friendly jamming. IEEE Trans Wireless Commun 12(1):134–145

    Article  Google Scholar 

  23. Zhang N, Lu N, Shen XS (2013) Cooperative spectrum access towards secure information transfer for CRNs. IEEE J Select Areas in Comm 31(11):2453–2464

    Article  MathSciNet  Google Scholar 

  24. Jeon H, Mclaughlin SW, Kim IM, Ha J (2014) Secure communications with untrusted secondary nodes in cognitive radio networks. IEEE Trans Wireless Commun 13(4):1790–1805

    Article  Google Scholar 

  25. Gabry F, Schrammar N, Girnyk M, Li N, Thobaben R (2012) Cooperation for secure broadcasting in cognitive radio networks. IEEE ICC:1–8

  26. Nasir AA, Zhou XY, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wireless Commun 12(7):3622– 3636

    Article  Google Scholar 

  27. Jiang L, Tian H, Xing Z, Wang K, Zhang K, Maharjan S, Gjessing S, Zhang Y (2016) Social-aware energy harvesting device to device communications in 5g cellular networks. IEEE Wireless Commun 23 (4):20–27

    Article  Google Scholar 

  28. Lee S, Zhang R (2013) K.huang opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans Wireless Comm 12(9):4788–4799

    Article  Google Scholar 

  29. Zheng G, Jorswieck HZ, Ottersten B (2014) Information and energy cooperation in cognitive radio networks. IEEE Trans Signal Process 62(9):2290–2303

    Article  MathSciNet  Google Scholar 

  30. Nasir AA, Zhou XY, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wireless Commun 12(7):3622–3636

    Article  Google Scholar 

  31. Zhang R, Ho CK (2013) MIMO Broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wireless Comm 12(5):1989–2001

    Article  Google Scholar 

  32. Product Datasheet, 11667A Power Splitter, Agilent Technologies

  33. Vullers RJM, Schaijk RV, Doms I, Hoof CV, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53(7):675–814

    Article  Google Scholar 

  34. Charnes A, Cooper WW (1962) Programming with linear fractional functions. Naval Res Logist Quarter 9:181–186

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Research Council of Norway under Grants 240079/F20, by Research Council of Norway under Grants 249053, by National Natural Science Foundation of China under Grants 61471060 and by Creative Research Groups of China under Grants 61421061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Appendix A Proof of Proposition 3.1

Appendix A Proof of Proposition 3.1

The Karush-Kuhn-Tucker (KKT) conditions of problem (P3) are expressed as

$$ A_{1}^{*}\textbf{W}_{s}^{*} = 0, ~B_{1}^{*}\textbf{W}_{p}^{*} = 0, $$
(22)

First, we show that \( \text {rank}\left ({\textbf {W}_{p}^{*}} \right )=1\). The ST power constraint in (P3) is active with equality, it follows that the optimal dual variable 𝜃 >0. Since \({\textbf {H}_{ss}}\underset {\smash {\scriptscriptstyle -}}{\succ } 0\) and \({\textbf {H}_{ss_{k}}}\underset {\smash {\scriptscriptstyle -}}{\succ } 0\), we obtain \(\text {rank}\left ({ - {\lambda ^{*}}{\textbf {H}_{ss}} - {\partial _{k}^{*}}{\textbf {H}_{ss_{k}}} - {\theta ^{*}}\textbf {I}} \right )=N\). Moreover, since rank(H sp )≤1, it follows from Eq. 18 that \(\text {rank}\left ({B_{1}^{*}} \right ) \geqslant N - 1\). According to Eq. 22, we have \(\text {rank}\left ({\textbf {W}_{p}^{*}} \right )=1\).

Next, we prove the second part of Proposition 3.1. Define

$$ C_{1}^{*} = - {\lambda^{*}}{\textbf{H}_{ss}} - {\beta^{*}}{\tilde {\Gamma}_{p}}{\textbf{H}_{sp}} + \sum\limits_{k = 1}^{K} {\partial_{k}^{*}} {\tilde {\Gamma}_{{e_{k}}}}{\textbf{H}_{s{s_{k}}}} - {\theta^{*}}\textbf{I}, $$
(23)

Then we have

$$ A_{1}^{*} = C_{1}^{*} + \left( {{\lambda^{*}} + 1} \right){\textbf{H}_{ss}}, $$
(24)

since 𝜃 >0, \(\textbf {H}_{ss}\underset {\smash {\scriptscriptstyle -}}{ \succ } 0\), \(\textbf {H}_{ss_{k}}\underset {\smash {\scriptscriptstyle -}}{ \succ } 0\) and \({\textbf { H}_{sp}}\underset {\smash {\scriptscriptstyle -}}{ \succ } 0\), we have \(\text {rank}\left ({ - {\lambda ^{*}}{\textbf {H}_{ss}} - {\beta ^{*}}{{{\tilde {\Gamma } }_{p}}}{\textbf {H}_{sp}} - {\theta ^{*}}\textbf {I}} \right )=N\) . Without loss of generality, we define \(r = {\text { }}\text {rank}\left ({C_{1}^{*}} \right )\) and the orthonormal basis of the null space of \(C_{1}^{*}\) as \({\Upsilon } \in {\mathbb {C}^{N \times (N - r)}}\) such that \(C_{1}^{*}{\Upsilon } = 0\) and rank(Υ) = Nr. Let \({\pi _{t}} \in {\mathbb {C}^{N \times 1}}\), 1 ≤ tNr, denote the tth column of Υ. We can express the optimal solution of \(W_{s}^{*}\) as

$$ \textbf{W}_{s}^{*} = \sum\limits_{t = 1}^{N - r} {{a_{t}}} {\pi_{t}}\pi_{t}^{\dag} + bu{u^{\dag} }, $$
(25)

where \({a_{t}} \geqslant 0\), ∀t, b>0 and \(u \in {\mathbb {C}^{N \times 1}}\), ∥u∥=1, u Υ=0.

Last, we prove the third part. For \(\text {rank}\left ({\textbf {W}_{s}^{*}} \right ) > 1\), we construct another solution of the relaxed version of (P3), \(\tilde {\textbf {W}}_{s}^{*} = \textbf {W}_{s}^{*} - \sum \limits _{t = 1}^{N - r} {{a_{t}}} {\pi _{t}}\pi _{t}^{\dag }\), \(\tilde {\textbf {W}}_{p}^{*} = \textbf {W}_{p}^{*}\), \({\tilde {\tau }^{*}} = {\tau ^{*}}\). Then substituting them into the objective function and constraints in (P3) which achieves the same optimal value as the optimal solution and satisfies all the constrains. Thus, \(\left (\tilde {\mathbf {W}}_{s}^{*}, \tilde {\textbf {W}}_{p}^{*},{{\tilde {\tau }^{*}}} \right )\) is also an optimal solution to (P3) but with \(\text {rank}\left ({\textbf {W}_{s}^{*}} \right )=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Tian, H., Shen, J. et al. Quality of Protection in Cloud-Assisted Cognitive Machine-to-Machine Communications for Industrial Systems. Mobile Netw Appl 21, 1032–1042 (2016). https://doi.org/10.1007/s11036-016-0769-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0769-6

Keywords

Navigation