Skip to main content

Advertisement

Log in

CCN1 enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Implantation of autologous bone marrow mononuclear cells (BM-MNCs) has been performed in ischemic tissues, for stimulation of angiogenesis, but the limited number of BM-MNCs in patients with hindlimb ischemia disease may offset their overall therapeutic efficacy. CCN1 is a novel and essential regulator during angiogenesis. We evaluated whether CCN1 and BM-MNC are capable of promoting angiogenesis in hindlimb ischemia. In this study, we created the rat model of hindlimb ischemia, and then the rats were randomly divided into four groups: CCN1 infusion plus BM-MNC transplantation (CCN1 + BM-MNCs group), CCN1 infusion plus PBS injection (CCN1 group), vehicle infusion plus BM-MNC transplantation (BM-MNCs group) and vehicle infusion plus PBS injection (control group). The combination of CCN1 and BM-MNC therapy could increase blood perfusion, capillary/muscle fiber ratio and tissue oxygenation in ischemic hindlimb. Moreover, CCN1 could not only inhibit the apoptosis of BM-MNCs, but also enhance the adhesiveness of BM-MNCs to HUVEC. Taken together, CCN1 enhanced angiogenesis of BM-MNC transplantation, and combining CCN1 with BM-MNC transplantation is a useful alternative for ischemic limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA (2009) Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 18:371–380

    Article  PubMed  Google Scholar 

  2. Lawall H, Bramlage P, Amann B (2011) Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg 53:445–453

    Article  PubMed  Google Scholar 

  3. Aranguren XL, Verfaillie CM, Luttun A (2009) Emerging hurdles in stem cell therapy for peripheral vascular disease. J Mol Med 87:3–16

    Article  PubMed  Google Scholar 

  4. Oladipupo S, Hu S, Kovalski J, Yao J, Santeford A, Sohn RE et al (2011) VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc Natl Acad Sci 108:13264–13269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Park C, Lee JY, Yoon Y-S (2011) Role of bone marrow-derived lymphatic endothelial progenitor cells for lymphatic neovascularization. Trends Cardiovasc Med 21:135–140

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hou X, Wu X, Ma J, Lv X, Jin X (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37:1467–1475

    Article  CAS  PubMed  Google Scholar 

  7. Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108:2511–2516

    Article  PubMed  Google Scholar 

  8. Berschneider B, Königshoff M (2011) WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. Int J Biochem Cell Biol 43:306–309

    Article  CAS  PubMed  Google Scholar 

  9. O’Brien TP, Yang G, Sanders L, Lau L (1990) Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 10:3569–3577

    PubMed Central  PubMed  Google Scholar 

  10. Yu Y, Gao Y, Qin J, Kuang C-Y, Song M-B, Yu S-Y et al (2010) CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol 105:713–724

    Article  CAS  PubMed  Google Scholar 

  11. Rother M, Krohn S, Kania G, Vanhoutte D, Eisenreich A, Wang X et al (2010) Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator clinical perspective. Circulation 122:2688–2698

    Article  CAS  PubMed  Google Scholar 

  12. Zuo G-W, Kohls CD, He B-C, Chen L, Zhang W, Shi Q et al (2010) The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathol 25:795

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Mo F-E, Muntean AG, Chen C-C, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Schütze N, Schenk R, Fiedler J, Mattes T, Jakob F, Brenner RE (2007) CYR61/CCN1 and WISP3/CCN6 are chemoattractive ligands for human multipotent mesenchymal stroma cells. BMC cell biol 8:45

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B (2007) The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood 110:877–885

    Article  CAS  PubMed  Google Scholar 

  16. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K-I, Duan J et al (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903

    Article  CAS  PubMed  Google Scholar 

  17. Iwaguro H, Yamaguchi J-I, Kalka C, Murasawa S, Masuda H, Hayashi S-I et al (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738

    Article  CAS  PubMed  Google Scholar 

  18. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  19. Alev C, Ii M, Asahara T (2011) Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid Redox Signal 15:949–965

    Article  CAS  PubMed  Google Scholar 

  20. Yin T, Ma X, Zhao L, Cheng K, Wang H (2008) Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18:792–799

    Article  CAS  PubMed  Google Scholar 

  21. Kuliszewski MA, Kobulnik J, Lindner JR, Stewart DJ, Leong-Poi H (2011) Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther 19:895–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Smadja D, d’Audigier C, Guerin C, Mauge L, Dizier B, Silvestre J et al (2011) Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transpl 47:997–1000

    Article  Google Scholar 

  23. Idei N, Soga J, Hata T, Fujii Y, Fujimura N, Mikami S et al (2011) Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia a comparison of atherosclerotic peripheral arterial disease and buerger disease. Circulation 4:15–25

    PubMed  Google Scholar 

  24. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  25. Leu S-J, Lam SC-T, Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255

    Article  CAS  PubMed  Google Scholar 

  26. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  27. Kobayashi K, Kondo T, Inoue N, Aoki M, Mizuno M, Komori K et al (2006) Combination of in vivo angiopoietin-1 gene transfer and autologous bone marrow cell implantation for functional therapeutic angiogenesis. Arterioscler Thromb Vasc Biol 26:1465–1472

    Article  CAS  PubMed  Google Scholar 

  28. Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M et al (2005) Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation 111:356–362

    Article  CAS  PubMed  Google Scholar 

  29. Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y et al (2003) Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1–dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res 93:980–989

    Article  CAS  PubMed  Google Scholar 

  30. Kok SH, Hou KL, Hong CY, Wang JS, Liang PC, Chang CC et al (2011) Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum 63:1010–1020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunping Yin.

Additional information

Cunping Yin and Yuan Liang authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Liang, Y., Guo, S. et al. CCN1 enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Mol Biol Rep 41, 5813–5818 (2014). https://doi.org/10.1007/s11033-014-3455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3455-4

Keywords

Navigation