Skip to main content

Advertisement

Log in

Profiling of mitochondrial proteome in wheat roots

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitochondria are important organelles for cellular respiration within the eukaryotic cell and have many important functions including vitamin synthesis, amino acid metabolism and photorespiration. To investigate the mitochondrial proteome of the roots of wheat seedlings, a systematic and targeted analysis were carried out on the mitochondrial proteome from 15 day-old wheat seedling root material. Mitochondria were isolated by Percoll gradient centrifugation; and extracted proteins were disassociated and analyzed by Tricine SDS-PAGE couple to LTQ–FTICR mass spectrometry. From the isolated the sample, 184 proteins were identified which is composed of 140 proteins as mitochondria and 44 proteins as other subcellular proteins that are predicted by the freeware sub-cellular predictor. The identified proteins in mitochondria were functionally classified into 12 classes using the ProtFun 2.2 servers based on biological processes. Proteins were shown to be involved in amino acid biosynthesis (17.1 %), biosynthesis of cofactors (6.4 %), cell envelope (11.4 %), central intermediary metabolism (10 %), energy metabolism (20 %), fatty acid metabolism (0.7 %), purines and pyrimidines (5.7 %), regulatory functions (0.7 %), replication and transcription (1.4 %), translation (22.1 %), transport and binding (1.4 %), and unknown (2.8 %). These results indicate that many of the protein components present and functions of identifying proteins are common to other profiles of mitochondrial proteins performed to date. These results are provided the extensive and noble clues, to our knowledge, of mitochondrial proteins from wheat roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

IEF:

Isoelectric focusing

pI :

Isoelectric point

FT:

Fourier transform

LTQ:

Linear quadruple trap

ICR:

Ion cyclotron resonance

References

  1. Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9:6595–6604

    Article  CAS  PubMed  Google Scholar 

  2. Rabilloud T (2008) Mitochondrial proteomics: analysis of a whole mitochondrial extract with two-dimensional electrophoresis. Methods Mol Biol 432:83–100

    Article  CAS  PubMed  Google Scholar 

  3. Lee CP, Eubel H, O’Toole N, Millar AH (2011) Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria. J Phytochem 72:1092–1108

    Article  CAS  Google Scholar 

  4. Huang S, Taylor NL, Narsai R, Eubel H, Whelan J, Millar AH (2009) Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149:719–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Huang S, Shingaki-Wells RN, Taylor NL, Millar AH (2013) The rice mitochondrial proteome and its response during development and to the environment. Front Plant Sci. doi:10.3389/fpls.2013.00016

    Google Scholar 

  6. Millar AH, Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in rabidopsis. Plant Physiol 131:443–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Moller IM (2005) The plant mitochondrial proteome. Trends Plant Sci 10(1):36–43

    Article  CAS  PubMed  Google Scholar 

  8. Tomaz T, Bagard M, Pracharoenwattana I, Linden P, Lee CP, Carroll AJ, Stroher E, Smith SM, Gardestrom P, Millar AH (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in arabidopsis. Plant Physiol 154:1143–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Berkelman T, Stenstedt T (2001) 2-D electrophoresis: principles and methods, vol 84. Amersham biosciences AB, Uppsala, sweden, pp 58–59

    Google Scholar 

  10. Heazlewood JL, Howell KA, Whelan J, Millar AH (2003) Towards an analysis of the rice mitochondrial proteome. Plant Physiol 132:230–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Taylor NL, Heazlewood JL, Millar AH (2011) The Arabidopsis thaliana 2-D gel mitochondrial proteome: refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications. Proteomics 11:1720–1733

    Article  CAS  PubMed  Google Scholar 

  12. Lee CP, Taylor NL, Millar AH (2013) Recent advances in the composition and heterogeneity of the Arabidopsis mitochondrial proteome. Front Plant Sci. doi:10.3389/fpls.2013.00004

    Google Scholar 

  13. Duncan O, Taylor NL, Carrie C, Eubel H, Kubiszewski-Jakubiak S, Zhang B, Narsai R, Millar AH, Whelan J (2011) Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. Plant Physiol 157:1093–1113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10(9):3993–4004

    Article  CAS  PubMed  Google Scholar 

  15. le Hoa TP, Nomura M, Kajiwara H, Day DA, Tajima S (2004) Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules. Plant Cell Physiol 45(3):300–308

    Article  CAS  Google Scholar 

  16. Schagger H, Jagow GV (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDa. Anal Biochem 166:368–379

    Article  CAS  PubMed  Google Scholar 

  17. Kim JY, Lee JH, Park GW, Cho K, Kwon KH (2005) Utility of electrophoretically derived protein mass estimates as additional constraints in proteome analysis of human serum based on MS/MS analysis. Proteomics 5:3376–3385

    Article  CAS  PubMed  Google Scholar 

  18. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  PubMed  Google Scholar 

  19. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  PubMed  Google Scholar 

  20. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed Central  PubMed  Google Scholar 

  21. Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zorb C, Herbst R, Forreiter C, Schubert S (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9:4209–4220

    Article  PubMed  Google Scholar 

  23. Kamal AHM, Cho K, Choi JS, Jin Y, Park CS, Lee JS, Woo SH (2013) Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant 57(2):305–312

    Article  CAS  Google Scholar 

  24. Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KY, Lee SY, Choi JS, Cho SW, Shin CS, Woo SH (2012) Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39:9059–9074

    Article  CAS  PubMed  Google Scholar 

  25. Kamal AHM, Cho K, Komatsu S, Uozumi N, Choi JS, Woo SH (2011) Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome. Mol Biol Rep 39:5069–5083

    Article  PubMed  Google Scholar 

  26. Schneider G, Fechner U (2004) Advances in the prediction of protein targeting signals. Proteomics 4:1571–1580

    Article  CAS  PubMed  Google Scholar 

  27. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  CAS  PubMed  Google Scholar 

  28. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  PubMed  Google Scholar 

  29. Kikuchi S, Hirohashi T, Nakai M (2006) Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol 47:363–371

    Article  CAS  PubMed  Google Scholar 

  30. Kyte J, Doolittle R (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  31. Maiti T, Maitra U (1997) Characterization of translation initiation factor 5 (eIF5) from Saccharomyces cerevisiae. J Biol Chem 272(29):18333–18340

    Article  CAS  PubMed  Google Scholar 

  32. Goggin DE, Lipscombe R, Fedorova E, Millar AH, Mann A, Atkins CA, Smith PM (2003) Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Plant Physiol 131:1033–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  34. Lindemann P, Luickner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. J Phytochem 46:507–513

    Article  CAS  Google Scholar 

  35. Brugiere S, Kowalski S, Ferro M, Seigneurin-Berny D, Miras S, Salvi D, Ravanel S, d’Herin P, Garin J, Bourguignon J, Joyard J, Rolland N (2004) The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. J Phytochem 65:1693–1707

    Article  CAS  Google Scholar 

  36. Cui X, Wise R, Schnable P (1996) The rf2 nuclear restorer of male-sterile T-cytoplasm maize encodes a putative aldehyde dehydrogenase. Science 272:1334–1336

    Article  CAS  PubMed  Google Scholar 

  37. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Seytter T, Lottspeich F, Neupert W, Schwarz E (1998) Mam33p, an oligomeric, acidic protein in the mitochondrial matrix of Saccharomyces cerevisiae is related to the human complement receptor gC1q-R. Yeast 14:303–310

    Article  CAS  PubMed  Google Scholar 

  40. Odgren PR, Toukatly G, Bangs PL, Gilmore R, Fey EG (1996) Molecular characterisation of mitofilin (HMP), a mitochondrial associated protein with predicted coiled coil and intermembrane space targeting domains. J Cell Sci 109:2253–2264

    CAS  PubMed  Google Scholar 

  41. Humphery-Smith I, Colas des Francs-Small C, Ambart-Bretteville F, Remy R (1992) Tissue-specific variation of pea mitochondrial polypeptides detected by computerized image analysis of two-dimensional electrophoresis gels. Electrophoresis 13:168–172

    Article  CAS  Google Scholar 

  42. Colas des Francs-Small C, Ambard-Bretteville F, Darpas A, Sallantin M, Huet JC, Pernollet JC, Remy R (1992) Variation of the polypeptide composition of mitochondria isolated from different potato tissues. Plant Physiol 98:273–278

    Article  CAS  Google Scholar 

  43. Davy de Virville J, Alin MF, Aaron Y, Remy R, Guillot-Salomon T, Cantrel C (1998) Changes in functional properties of mitochondria during growth cycle of Arabidopsis thaliana cell suspension cultures. Plant Physiol Biochem 36:347–356

    Article  Google Scholar 

  44. Dunbar B, Elthon T, Osterman J, Whitaker B, Wilson S (1997) Identification of plant mitochondrial proteins: a procedure linking two-dimensional gel electrophoresis to protein sequencing from PVDF membranes using a FastBlot cycle. Mol Biol Rep 15:46–61

    Article  CAS  Google Scholar 

  45. Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate: glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the AGENDA (9069532012), RDA, Korea to S. H. Woo, College of Agriculture, Life and Environments, Chungbuk National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moon-Soon Lee or Sun-Hee Woo.

Additional information

Da-Eun Kim, Swapan Kumar Roy, Abu Hena Mostafa Kamal have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3407_MOESM1_ESM.xls

Supplementary Table 1. List of identifying mitochondrial proteins in roots of wheat seedlings by Tricine SDS-PAGE, which is analyzed by LTQ-FT-ICR mass spectrometry (XLS 70 kb)

11033_2014_3407_MOESM2_ESM.xls

Supplementary Table 2. List of identifying proteins from other organelles as contaminant proteins in wheat roots (XLS 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DE., Roy, S.K., Kamal, A.H.M. et al. Profiling of mitochondrial proteome in wheat roots. Mol Biol Rep 41, 5359–5366 (2014). https://doi.org/10.1007/s11033-014-3407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3407-z

Keywords

Navigation