Skip to main content
Log in

Patterns of protein expression in water-stressed wheat chloroplasts

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The performance of control and water-stressed 10-d-old wheat seedlings was compared. During short-term water stress (irrigation was withheld for 9 d), rates of photosynthesis and transpiration, stomatal conductance, and relative water content decreased whereas the proline content increased. Chloroplast proteins were extracted from the leaves, separated by iso-electric focusing through two-dimensional electrophoresis, and stained with CBB R-250. Differentially expressed proteins were detected and analyzed with MALDI-TOF/TOF mass spectrometry. Under water stress, 9 proteins were up-regulated whereas 11 proteins were not affected. The ribulose-1,5-bisphospate carboxylase/oxygenase (Rubisco) small and large subunits, chloride carrier/channel family, and H+-ATPase were up-regulated by water stress whereas membrane-bound ATP synthase subunit b and cytochrome b6-f complex were down-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-DE:

two-dimensional electrophoresis

CLC:

chloride carrier/channel

MALDI:

matrix assisted laser desorption/ionization

Rubisco:

ribulose-1,5-bisphospate carboxylase/oxygenase

TOF:

time-of-flight

References

  • Abbasi, F.M., Komatsu, S.: A proteomic approach to analyse salt-responsive proteins in rice leaf sheath. — Proteomics 4: 2072–2081, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Alam, I., Sharmin, S.A., Kim, K. H., Yang, J.K., Choi, M.S., Lee, B.H.: Proteome analysis of soybean roots subjected to short-term drought stress. — Plant Soil 333: 491–505, 2010.

    Article  CAS  Google Scholar 

  • Ali, G.M., Komatsu, S.: Proteomic analysis of rice leaf sheath during drought stress. — J. Proteome Res. 5: 396–403, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. biol. Sci. 15: 413–425, 1962.

    Google Scholar 

  • Bates, L., Waldren, R.P., Tear, I.P.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M.M.: Effects of water deficits on carbon assimilation. — J. exp. Bot. 42: 1–16. 1991.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Oliveira, M.M.: Mechanisms underlying plant resilience to water deficits, prospects for water-saving agriculture. — J. exp. Bot. 55: 2365–2384, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M.M., Pereira, J.S., Maroco, J.: Understanding plant response to drought — from genes to the whole plant. — Funct. Plant Biol. 30: 239–264, 2003.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, T., Pinheiro, C.: How plants cope with water stress in the field? Photosynthesis and growth. — Ann. Bot. 89: 907–916, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of lraves at high temperature and CO2. — Proc. nat. Acad. Sci USA 97: 13430–13435, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Damerval, C., De Vienne, D., Zivy, M., Thiellement, H.: Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheatseedling proteins. — Electrophoresis 7: 52–54, 1986.

    Article  CAS  Google Scholar 

  • Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., Feller, U.: Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. — Acta Physiol. Plant. 31: 1129–1138, 2009.

    Article  CAS  Google Scholar 

  • Díaz, P., Borsani, A., Monza, J.: Acumulación de prolina en plantas en respuesta al estrés osmotico. — Agrociencia 3: 1–10, 1999.

    Google Scholar 

  • Efeoğlu, B., Ekmekçi, Y., Çiçek, N.: Physiological responses of three maize cultivars to drought stress and recovery. — South Afr. J. Bot. 75: 34–42, 2009.

    Article  Google Scholar 

  • Farooq, M., Kobayashi, N., Ito, O., Wahid, A., Serraj, R.: Broader leaves result in better performance of indica rice under drought stress. — J. Plant Physiol. 167: 1066–1075, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R.A., Rees, D., Sayre, K.D., Lu, Z.M., Condon, A.G., Larqué-Saavedra, A.: Wheat yield progress is associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.

    Article  Google Scholar 

  • Flexas, J., Diaz-Espejo, A., Galmés J., Kaldenhoff, R., Medrano, H., Ribas-Carbo, M.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. — Plant Cell Environ. 30: 1284–1298, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Ribas-Carbó, J.M., Bota, J., Galmés, J., Henkle, M., Martínez-Cañellas, S., Medrano, H.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. — New Phytol. 172: 73–82, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., Parry, M.A.J.: Green shoots of sustainability: plant responses to stress. — Institute of Arable Crops Research Rep. Pp. 16–19, 2000–2001.

  • Grigorova, B., Vaseva, I., Demirevska, K., Feller, U.: Combined drought and heat stress in wheat: changes in some heat shock proteins. — Biol. Plant. 55: 105–111, 2011.

    Article  CAS  Google Scholar 

  • Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., Heidari, M., Sadeghian, S.Y., Ober, E.S., Salekdeh, G.H.: Proteome analysis of sugar beet leaves under drought stress. — Proteomics 5: 950–960, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hare, P.D., Cress, W.A., Van Standen, J.: Proline synthesis and degradation, the model goes elucidating stress related signal transduction. — J. exp. Bot. 50: 413–434, 1999.

    CAS  Google Scholar 

  • Hasegawa, Y., Muraki, T., Tokuyama, T., Iwaki, H., Tatsuno, M., Lau, P.C.: A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. — FEMS Microbiol. Lett. 190: 185–190, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hjernø, K., Roepstorff, P.: Improvement of sequence coverage in peptide mass fingerprinting. — Encyclopedia Genet. Genom Proteom Bioinform. DOI:10.1002/047001153X.g301413, 2005.

  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K.: WoLF PSORT, protein localization predictor. — Nucl. Acids Res. 35: 585–587, 2007.

    Article  Google Scholar 

  • Huang, H., Barker, W.C., Chen, Y., Wu, C.H.: ProClass: an integrated database of protein family, function and structure information. — Nucl. Acids Res. 31: 390–392, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Huo, C.M., Zhao, B.C., Ge, R.C., Shen, Y.Z., Huang, Z.J.: [Proteomic analysis of the salt tolerance mutant of wheat under salt stress.] — Yi Chuan Xue Bao 31: 1408–1414, 2004. [In Chinese]

    PubMed  CAS  Google Scholar 

  • Hurt, E., Hauska, G.: A cytochrome f/b6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. — Eur. J. Biochem. 117: 591–595, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, H., Nishimori, Y., Sugisawa, M., Makino, A., Mae, T.: The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kda and 16-kda polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. — Plant Cell Physiol. 38: 471–479, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C.Z., Rodermel, S.R., Shibles, R.M.: Photosynthesis, Rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. — Plant Physiol. 101: 105–112, 1993.

    PubMed  CAS  Google Scholar 

  • Johari-Pireivatlou, M., Qasimov, N., Maralian, H.: Effect of soil water stress on yield and proline content of four wheat lines. — Afr. J. Biotechnol. 9: 36–40, 2010.

    CAS  Google Scholar 

  • Kamal, A.H.M., Cho, K., Kim, D.K., Uozumi, N., Chung, K.Y., Lee, S.Y., Choi, J.S., Cho, S.W., Shin, C.S., Woo, S.H.: Changes in physiology and protein abundance in saltstressed wheat chloroplasts. — Mol. Biol. Rep. DOI: 10.1007/s11033-012-1777-7, 2012b

  • Kamal, A.H.M., Cho, K., Komatsu, S., Uozumi, N., Choi, J.S., Woo, S.H.: Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome. — Mol. Biol. Rep. 39: 5069–5083, 2012a

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.R., Kamal, A.H.M., Seo, Y.W., Park, C.S., Nam, J., Kim, S.I., Choi, J.S., Woo, S.H.: Leaf proteome analysis of wheat-rye translocation lines. — Aust. J. Crop Sci. 5: 1670–1677, 2011.

    CAS  Google Scholar 

  • Kim, K.H., Kamal, A.H.M., Shin, K.H., Choi, J.S., Heo, H.Y., Woo, S.H.: Large-scale proteome investigation in wild relatives (A, B and D genomes) of wheat. — Acta biochem. biophys. sin. 42: 709–716, 2010.

    Article  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Murota, K.I., Ohshita, Y., Watanabe, A., Aso, S., Sato, F., Yamada, Y.: Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. — Plant Cell Physiol. 35: 107–113, 1994.

    CAS  Google Scholar 

  • Nakai, K., Kanehisa, M.: Expert system for predicting protein localization sites in gram-negative bacteria. — Proteins 11: 95–110, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, E.T., Orcutt, D.M.: The Physiology of Plants under Stress. — John Wiley & Sons, New York 1996.

    Google Scholar 

  • O’Farrell, P.H.: High resolution two-dimensional electrophoresis of proteins. — J. biol. Chem. 250: 4007–4021, 1975.

    PubMed  Google Scholar 

  • Ort, D.R.: When there is too much light. — Plant Physiol. 125: 29–32, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Paakkonen, E., Vahala, J., Pohjolai, M., Holopainen, T., Karenlampi, L.: Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. — Plant Cell Environ. 21: 671–684, 1998.

    Article  CAS  Google Scholar 

  • Peng, Z., Wang, M., Li, F., Lv, H., Li, C., Xia, G.: A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. — Mol. cell. Proteomics 8: 2676–2686, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Porra, R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. — Photosyn. Res. 73: 149–156, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pradet, A., Raymond, P.: Adenine nucleotide ratios and adenylate energy charge in energy metabolism. — Annu. Rev. Plant Physiol. 34: 199–224, 1983.

    Article  CAS  Google Scholar 

  • Quarrie, S.A., Jones, H.G.: Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. — Ann. Bot. 44: 323–332, 1979.

    CAS  Google Scholar 

  • Ribas-Carbo, M., Taylor, N.L., Giles, L., Busquets, S., Finnegan, P.M., Day, D.A., Lambers, H., Medrano, H., Berry, J.A., Flexas, J.: Effects of water stress on respiration in soybean leaves. — Plant Physiol. 139: 466–473, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Richards, R.A., Condon, A.G., Rebetzke, G.J.: Traits to improve yield in dry environments. — In: Reynolds, M.P., Ortiz Monasterio, J.I., and McNab. A. (ed.): Application of Physiology in Wheat Breeding. Pp. 88–100, CIMMYT, Mexico City 2001.

    Google Scholar 

  • Rodrigues, F.A., Da Graça, J.P., De Laia, M.L., Nhani, A., Jr., Galbiati, J.A., Ferro, M.I.T., Ferro, J.A., Zingaretti, S.M.: Sugarcane genes differentially expressed during water deficit. — Biol. Plant. 55: 43–53, 2011.

    Article  CAS  Google Scholar 

  • Roemer, S., Hugueney, P., Bouvier, F., Camara, B., Kuntz, M.: Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. — Biochem. biophys. Res. Commun. 196: 1414–1421, 1993.

    Article  Google Scholar 

  • Rosales-Serna, R., Kohashi-Shibata, J., Acosta-Gallego, J.A., López, C.T., Cereceres, J.O., Kelly, J.D.: Biomass distribution, maturity acceleration and yield in droughtstressed common bean cultivars. — Field Crops Res. 85: 203–211, 2004.

    Article  Google Scholar 

  • Salekdeh, G.H., Komatsu, S.: Crop proteomics: aim at sustainable agriculture of tomorrow. — Proteomics 7: 2976–2996, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh, G.H., Siopongco, J., Wade, L.J., Ghareyazie, B., Bennett, J.: Proteomic analysis of rice leaves during drought stress and recovery. — Proteomics 2: 1131–1145, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, A., Ilan, N., Schwarz, M., Scheaffer, J., Assmann, S.M., Schroeder J.I.: Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells. — Plant Physiol. 109: 651–658, 1995.

    PubMed  CAS  Google Scholar 

  • Serraj, R., Sinclair, T.R.: Osmolyte accumulation, can it really help increase crop yield under drought conditions? — Plant Cell Environ. 25: 333–341, 2002.

    Article  PubMed  Google Scholar 

  • Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E., Li, J.: Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. — J. Plant Physiol. 167: 1248–1252, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic, S., Pfeil, B.E., Palmer, J.D., Doyle, J.J.: Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. — Syst. Bot. 34: 115–128, 2009.

    Article  Google Scholar 

  • Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S., Karube, I.: Molecular characterization of cDNA encoding oxygenevolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. — Plant Cell Physiol. 41: 1279–1285, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Tezara, W., Mitchell, V.J., Driscoll, S.D., Lawlor, D.W.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 401: 914–917, 1999.

    Article  CAS  Google Scholar 

  • Thapa, G, Dey, M., Sahoo, L., Panda, S.K.: An insight into the drought stress induced alterations in plants. — Biol. Plant. 55: 603–613, 2011.

    Article  CAS  Google Scholar 

  • Vendruscolo, E.C., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B., Marur, C.J., Vieira, L.G.: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. — J. Plant Physiol. 164: 1367–1376, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root in low water potentials. III. Roles of increased proline depositions in osmotic adjustment. — Plant Physiol. 96: 125–130, 1991.

    Article  Google Scholar 

  • Wardley, T.A., Bhalla, P.L. Dalling, M.J.: Changes in the number and composition of chloroplasts during senescence of mesophyll cells of attached and detached leaves of wheat (Triticum aestivum L.). — Plant Physiol. 75: 421–424, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, W., Gorg, A.: Two-dimensional electrophoresis for plant proteomics. — Methods mol. Biol. 355: 121–143, 2007.

    PubMed  CAS  Google Scholar 

  • Worden, A.Z., Lee, J.H., Mock, T.: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. — Science 324: 268–272, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zorb, C., Herbst, R., Forreiter, C., Schubert, S.: Short-term effects of salt exposure on the maize chloroplast protein pattern. — Proteomics 9: 4209–4220, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Woo.

Additional information

Acknowledgements: Financial support for this study was obtained from Agenda project (PJ9069532012), RDA, Suwon, Kyonggi, Korea to S. H. Woo, and the project fund (C32730) to J.S. Choi from the Center for Analytical Research of Disaster Science of Korea Basic Science Institute, and also technically supported by the Korea Basic Science Institute Research Grant (T32608) to K.Cho. A.H.M. Kamal and K. Cho equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, A.H.M., Cho, K., Choi, J.S. et al. Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant 57, 305–312 (2013). https://doi.org/10.1007/s10535-012-0290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0290-0

Additional key words

Navigation