Skip to main content
Log in

Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelkrim J, Robertson BC, Stanton JA, Gemmell NJ (2009) Fast cost-efective development of species-specific microsatalite markers by genomic sequencing. Biotechniques 46:185–192. doi:10.2144/000113084

    Article  CAS  PubMed  Google Scholar 

  • Acharya HS, Sharma V (2009) Molecular characterization of opium poppy (Papaver somniferum) germplasm. Am J Infect Dis 5:148–153

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274

    Article  CAS  PubMed  Google Scholar 

  • Carolan JC, Hook ILI, Chase MW, Kadereit JW, Hodkinson TR (2006) Phylogenetics of Papaver and related genera based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Ann Bot 98:141–155. doi:10.1093/aob/mcl079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavagnaro PF, Douglas AS, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569. doi:10.1186/1471-2164-11-569

    Article  Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Gen Resour Crop Evol 52:903–909. doi:10.1007/s10722-003-6112-7

    Article  CAS  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159. doi:10.1101/gr.1917404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dittbrenner A, Lohwasser U, Mock HP, Börner A (2008) V International symposium on the taxonomy of cultivated plants. In: Groendijk-Wilders N, Alexander C, Berg RGVD, Hetterscheid WLA (eds) Molecular and phytochemical studies of Papaver somniferum in the context of infraspecific classification. ISHS Acta Horticulturae, Wageningen, pp 81–88

    Google Scholar 

  • Doyle JJ, Doyle JE (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132. doi:10.1038/sj.hdy.6801001

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J Cell Mol Biol 54:763–784. doi:10.1111/j.1365-313X.2008.03438.x

    Article  CAS  Google Scholar 

  • Gumuscu A, Arslan N (2008) Researches on heterosis on yield and yield components of some poppy. Tarım Bilimleri Dergisi 14:365–373

    Google Scholar 

  • Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966. doi:10.1111/j.1469-8137.2009.02933.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Blaxter ML (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genom 11:571. doi:10.1186/1471-2164-11-571

    Article  Google Scholar 

  • Lavania UC, Srivastava S (1999) Quantitative delineation of karyotype variation in Papaver as an measure of phylogenetic differentiation origin. Curr Sci 77:429–435

    Google Scholar 

  • Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, Wright CL, Kim RW, Mikel MA, Tranel PJ (2009) Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology. Weed Sci 57:463–469. doi:http://dx.doi.org/10.1614/WS-09-021.1

    Google Scholar 

  • Lee EJ, Jin GN, Lee KL, Han MS, Lee YH, Yang MS (2011) Exploiting expressed sequence tag databases for the development and characterization of gene-derived simple sequence repeat markers in the opium poppy (Papaver somniferum L.) for forensic applications. J Forensic Sci 56:1131–1135. doi:10.1111/j.1556-4029.2011.01810.x

    Article  CAS  PubMed  Google Scholar 

  • Lepais O, Bacles CFE (2011) De novo discovery and multiplexed amplification of microsatellite markers for black alder (Alnus glutinosa) and related species using SSR-enriched shotgun pyrosequencing. J Hered 102:627–632. doi:10.1093/jhered/esr062

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465. doi:10.1046/j.1365-294X.2002.01643.x

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441. doi:10.1126/science.2983426

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200. doi:10.1038/ng822

    Article  CAS  PubMed  Google Scholar 

  • Parmaksiz I, Ozcan S (2011) Morphological, chemical and molecular analyses of Turkish Papaver accessions (Sect. Oxytona). Turk J Bot 35:1–16. doi:10.3906/bot-1003-39

    CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin

  • Roldan-Ruiz I, Dendauw J, Bockstaele EV, Depicker A, Loose MD (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134. doi:10.1023/A:1009680614564

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Bioinformatics methods and protocols: methods in molecular biology. In: Krawetz S, Misener S (eds) Primer3 on the WWW for general users and for biologist programmers. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saunders JA, Pedroni MJ, Penrose LDJ, Fist AJ (2001) AFLP analysis of opium poppy. Crop Sci 41:1596–1601. doi:10.2135/cropsci2001.4151596x

    Article  CAS  Google Scholar 

  • Schulz H, Baranska M, Quilitzsch R, Schütze W (2004) Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Analyst 129:917–920. doi:10.1039/B408930H

    Article  CAS  PubMed  Google Scholar 

  • Selale H, Celik I, Gultekin V, Allmer J, Doganlar S, Frary A (2013) Development of EST-SSR markers for diversity and breeding studies in opium poppy (Papaver somniferum L.). Plant Breed 132:344–351. doi:10.1111/pbr.12059

    Article  CAS  Google Scholar 

  • Straka P, Nothnagel T (2002) A genetic map of Papaver somniferum L. based on molecular and morphological markers. J Herbs Spices Med Plants 9:235–241. doi:10.1300/J044v09n02_a

    Article  CAS  Google Scholar 

  • Tian CX, Liang XF, Yang M, Zheng HZ, Dou YQ, Cao L (2012) Isolation and characterization of novel genomic and EST-SSR markers in Coreoperca whiteheadi Boulenger and cross-species amplification. Int J Mol Sci 13:13203–13211. doi:10.3390/ijms131013203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turkish Soil Product Office (2009) Opium poppy report. Turkish Soil Production Office, Ankara

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55. doi:10.1016/j.tibtech.2004.11.005

    Article  CAS  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Sci Exp 336:1704–1708. doi:10.1126/science.1220757

    Article  CAS  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, Mccown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96. doi:10.1007/s00122-011-1689-2

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtländer S, Gesell A, Pienkny S, Brandt W (2009) Evolution of morphine biosynthesis in opium poppy. Phytochemistry 70:1696–1707. doi:10.1016/j.phytochem.2009.07.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hüseyin Camci, Dr. Arzu Köse and Dr. Ferda Kosar from the Anatolia Agricultural Research Institute for providing plant material. We are also grateful to Ali Üncü and Ayşe Dülger Üncü for SSR validation by sequencing. This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) project no. 109O797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Frary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, I., Gultekin, V., Allmer, J. et al. Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing. Mol Breeding 34, 323–334 (2014). https://doi.org/10.1007/s11032-014-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0036-0

Keywords

Navigation