Skip to main content
Log in

Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Groundnut bruchid (Caryedon serratus Olivier) is a major storage insect pest that significantly lowers the quality and market acceptance of the produce. Screening for resistance against groundnut bruchid in field conditions is difficult due to the variation in environmental factors and possible occurrence of biotypes. Hence, identification of tightly linked markers or quantitative trait loci (QTLs) is needed for selection and pyramiding of resistance genes for durable resistance. A population of recombinant inbred lines derived from a cross between VG 9514 (resistant) and TAG 24 (susceptible) was screened for five component traits of bruchid resistance in 2 years. The same population was genotyped with 221 polymorphic marker loci. A genetic linkage map covering 1,796.7 cM map distance was constructed with 190 marker loci in cultivated groundnut. QTL analysis detected thirteen main QTLs for four components of bruchid resistance in nine linkage groups and 31 epistatic QTLs for total developmental period (TDP). Screening in 2 years for bruchid resistance identified two common main QTLs. The common QTL for TDP, qTDP-b08, explained 57–82 % of phenotypic variation, while the other common QTL for adult emergence, qAE2010/11-a02, explained 13–21 % of phenotypic variation. Additionally, three QTLs for TDP, adult emergence and number of holes and one QTL for pod weight loss were identified which explained 14–39 % of phenotypic variation. This is the first report on identification of multiple main and epistatic loci for bruchid resistance in groundnut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azeemoddin G (1993) Post harvest technology of oilseeds. In: National seminar on “oilseeds research and development in India: status and strategies.” 2–5 August, 1993, Hyderabad, p 231

  • Blair MW, Munoz C, Garza R, Cardona C (2006) Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theor Appl Genet 112:913–923

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Munoz C, Burndia HF, Flower J, Bueno JM, Cardona C (2010) Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121:393–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burton GM, Devane EM (1953) Estimating heritability in tall Fescue from replication clonal material. Agron J 45:478–481

    Article  Google Scholar 

  • Byrne OM, Hardie DC, Khan T, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res 59:854–862

    Article  CAS  Google Scholar 

  • Chen HM, Ku HM, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216

    Article  Google Scholar 

  • Cunningham DC, Walsh KB (2002) Establishment of the peanut bruchid (Caryedon serratus) in Australia and two new host species, Cassia brewsteri and Cassia tomentella. Aust J Exp Agric 42:57–63

    Article  Google Scholar 

  • Devi DR, Rao NV (2005) Note on the performance of different groundnut pod-protectants against groundnut bruchid, Caryedon serratus (Olivier). Legume Res 28:229–230

    Google Scholar 

  • Dick KM (1987) Losses caused by insects to groundnuts stored in a warehouse in India. Trop Sci 27:65–75

    Google Scholar 

  • Diome T, Ndiaye A, Ndong A, Doumma A, Sanon A, Kétoh G, Sembéne M (2011) Genetic identification of West African ecotypes of groundnut seedbeetle Caryedon serratus Ol. (Coleopteran, Chrysomelidae). South Asian J Exp Biol 1:88–93

    Google Scholar 

  • Diome T, Ndong A, Kébé K, Thiaw C, Ndiaye A, Doumma A, Sanon A, Kétoh G, Sembéne M (2013) Effect of agroecological zones and contiguous basin crops of groundnut (Arachis hypogaea) on the structuring and genetic diversity of Caryedon serratus (Coleopteran: Chrysomelidae, Bruchidae) in the sub-region of West Africa. J Asia-Pac Entomol 16:209–217

    Article  Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Amelem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Mol Biol 57:517–540

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat Rev 3:43–52

    Article  CAS  Google Scholar 

  • Dongre TK, Pawar SE, Thakare RG, Harwalker MR (1996) Identification of resistant sources to cowpea weevil (Callosobruchus maculatus (F.)) in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res 32:201–204

    Article  Google Scholar 

  • FAOSTAT (2011) Food and Agricultural Organization. Available at http://faostat.fao.org (accessed 25 July 2013)

  • Gautami B, Foncéka D, Pandey M, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, Bhanuprakash A, Shah TM, Gowda MVC, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7(7):e41213

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibson KE, Raina AK (1972) A simple laboratory method of determining the seed host preference of Bruchidae. J Econ Entomol 65:1189–1190

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2008) PAST-palaeontological statistics, ver 1.81. Available at: http://folk.uio.no/ohammer/past (accessed 25 Dec 2012)

  • Hanson CH, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean Lespedeza. Agron J 48:268–272

    Article  Google Scholar 

  • Harish G, Rathnakumar AL, Kumar N, Ajay BC, Holajjer P, Savaliya SD, Gedia MV (2012) Comparative response of groundnut genotypes to bruchid beetle, Caryedon serratus Olivier in storage. Ann Plant Prot Sci 20:140–144

    Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, Van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Howe RW (1971) A parameter for expressing the suitability of an environment for insect development. J Stored Prod Res 7:63–65

    Article  Google Scholar 

  • IITA (International Institute for Tropical Agriculture) (2000) Field crop production. Annual report. IITA, Ibadan, p 10

  • IRRI (2003) IRRISTAT for windows. V 4.4. International Rice Research Institute, Metro Manila

    Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23. doi:10.3389/fpls.2013.00023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30:125–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic linkage maps with MAPMAKER EXP V3.0. Whitehead Institute Technical Report, 3rd edn.

  • Macedo SE, Moretzsohn MC, Leal-Bertioli SCM, Alves DMT, Gouvea EG, Azevedo VCR, Bertioli DJ (2012) Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes 5:86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra RP, Mukherjee SK, Dash D (2012) Influence of environmental factor on the growth and development of groundnut bruchid Caryedon serratus (Olivier) in storage. Indian J Entomol 74:36–40

    Google Scholar 

  • Mondal S, Badigannavar AM (2008) Identification of SSR marker for resistance to late leaf spot in cultivated groundnut (Arachis hypogaea L.). In: Abstract, 5th international crop science congress (ICSC), April 13–18, 2008, Jeju, Republic of Korea, p 266

  • Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breed 129:68–71

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, Murty GSS (2007) RAPD markers linked to a rust resistance gene in groundnut (Arachis hypogaea L.). Euphytica 159:233–239

    Article  Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012a) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29:467–476

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, D’Souza SF (2012b) Developement of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188:163–173

    Article  CAS  Google Scholar 

  • Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP, Parniske M, Varshney RK, Bertioli DJ (2009) A linkage map for the B genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Atkin P, Knapp SJ (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13:469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouedraogo I, Traore NS, Dakouo D, Guenda W, Dicko OI, Dabire LCB (2008) Impact de la bruche Caryedon serratus Olivier sur les Stocks d’arachide et Stratégie de protection en milieu paysan. Sci Tech Sci Nat Agron 30:7–18

    Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  CAS  PubMed  Google Scholar 

  • Patil SH, Kale DM, Deshmukh SN, Fulzele GR, Weginwar BG (1995) Semi-dwarf, early maturing and high yielding new groundnut variety, TAG 24. J Oilseed Res 12:254–257

    Google Scholar 

  • Prasad TV, Nandagopal V, Gedia MV, Savaliya SD (2007) Life table of Caryedon serratus (Coleopteran: Bruchidae) reared on three different hosts. Indian J Entomol 70:246–249

    Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Radwan OE, Ahmed TA, Knapp SJ (2010) Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers. Saudi J Biol Sci 17:43–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranga Rao GV, Rameshwar Rao V, Nigam SN (2010) Post harvest insect pest of groundnut and their management. In: Information bulletin no. 84. International Crops Research Institute for Semi-Arid Tropics, Andhra Pradesh, ISBN: 978-92-9066-528-1. Order code IBE 084, p 20

  • Redden RJ, Dobie P, Gatehouse AMR (1983) The inheritance of seed resistance to Callosobruchus rnaculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analyses of parental, F1, F2, F3 and backcross seed generations. Aust J Agric Res 34:681–695

    Article  Google Scholar 

  • Redlinger LM, Davis R (1982) Insect control in postharvest peanuts. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, TX, pp 520–571

    Google Scholar 

  • Sembène M, Rasplus JY, Silvain JF, Delobel A (2008) Genetic differentiation in sympatric populations of the groundnut seed beetle Caryedon serratus (Coleoptera: Chrysomelidae): new insights from molecular and ecological data. Int J Trop Insect Sci 28:168–177

    Article  Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1365–1373

    Article  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh V, Anitha Kumari D, Reddy VS, Tejkumar S (2002) Feeding potential of pod bruchid, Caryedon serratus Olivier (Bruchidae: Coleoptera) on stored groundnut. Indian J Plant Prot 30:213–214

    Google Scholar 

  • Somta P, Ammaranan C, Ooi PAC, Srinives P (2007) Inheritance of seed resistance of bruchids in cultivated mungbean (Vigna radiata L. Wilezek). Euphytica 155:47–55

    Article  Google Scholar 

  • Somta P, Kaga A, Tomooka N, Isemura T, Vaughan DA, Srivines P (2008) Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalens Tateishi & Maxted (Vigna subgenus Ceratotropis). Theor Appl Genet 117:621–628

    Article  CAS  PubMed  Google Scholar 

  • Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram (Vigna mungo (L.) Hepper). Euphytica 176:349–356

    Article  Google Scholar 

  • Varman PV (1999) A foliar disease resistant line developed through interspecific hybridization in groundnut (Arachis hypogaea). Indian J Agric Sci 69:67–68

    Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage map and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang JK, Li HH, Zhang LY, Meng L (2012) QTL IciMapping version 3.2. http://www.isbreeding.net (accessed 15 Mar 2013)

Download references

Acknowledgments

The authors are grateful to the Head, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre for encouragement and critical comments. The technical help from R. K. Sachan, T. Chalapathi and Sujit Tota during the field experiments is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvendu Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2013_11_MOESM1_ESM.xls

Table S1: Details of polymorphic marker loci used to construct the genetic linkage map in cultivated groundnut in this study. (XLS 85 kb)

11032_2013_11_MOESM2_ESM.xls

Table S2: Details of epistatic (additive x additive) QTLs for total developmental period (TDP) of groundnut bruchid resistance. (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Hadapad, A.B., Hande, P.A. et al. Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breeding 33, 961–973 (2014). https://doi.org/10.1007/s11032-013-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-0011-1

Keywords

Navigation