Skip to main content
Log in

Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) account for up to 80% of the wheat genome and are considered one of the main drivers of wheat genome evolution. However, the contribution of TEs to the divergence and evolution of wheat genomes is not fully understood. In this study, we have developed 55 miniature inverted-repeat transposable element (MITE) markers that are based on the presence/absence of an element, with over 60% of these 55 MITE insertions associated with wheat genes. We then applied these markers to assess genetic diversity among Triticum and Aegilops species, including diploid (AA, BB and DD genomes), tetraploid (BBAA genome) and hexaploid (BBAADD genome) species. While 18.2% of the MITE markers showed similar insertions in all species indicating that those are fossil insertions, 81.8% of the markers showed polymorphic insertions among species, subspecies, and accessions. Furthermore, a phylogenetic analysis based on MITE markers revealed that species were clustered based on genus, genome composition, and ploidy level, while 47.13% genetic divergence was observed between the two main clusters, diploids versus polyploids. In addition, we provide evidence for MITE dynamics in wild emmer populations. The use of MITEs as evolutionary markers might shed more light on the origin of the B-genome of polyploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bureau TE, Wessler SR (1994a) Mobile inverted-repeat elements of the tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91(4):1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1994b) Stowaway—a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6(6):907–916

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu SX, Kong XY, Jia JZ, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22(6):1686–1701

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143

    Article  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833):1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98(3–4):434–447

    Article  CAS  Google Scholar 

  • Fahima T, Roder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109(1–3):250–258

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16(5):643–650

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154(1):15–28

    Article  CAS  Google Scholar 

  • Haider N, Nabulsi I (2008) Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA. Genet Resour Crop Evol 55(4):537–549

    Article  CAS  Google Scholar 

  • Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, Batzer MA (2004) Differential Alu mobilization and polymorphism among the human and chimpanzee lineages. Genome Res 14(6):1068–1075

    Article  PubMed  CAS  Google Scholar 

  • Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 48(5):805–820

    Article  PubMed  CAS  Google Scholar 

  • Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15(4):526–536

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421(6919):163–167

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang XY, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7(2):115–119

    Article  PubMed  CAS  Google Scholar 

  • Johnson BL (1972) Protein electrophoretic profiles and the origin of the B genome of wheat. Proc Natl Acad Sci USA 69(6):1398–1402

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520–530

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421(6919):167–170

    Article  PubMed  CAS  Google Scholar 

  • Kimber G (1966) Estimate of the number of genes involved in the genetic suppression of the cytological diploidisation of wheat. Nature 212:317–318

    Article  Google Scholar 

  • Kimber G (1974) A reassessment of the origin of the polyploid wheats. Genetics 78(1):487–492

    PubMed  CAS  Google Scholar 

  • Konovalov FA, Goncharov NP, Goryunova S, Shaturova A, Proshlyakova T, Kudryavtsev A (2010) Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Genet Genomics 283(6):551–563

    Article  PubMed  CAS  Google Scholar 

  • Kudryavtsev AM, Martynov SP, Broggio M, Buiatti M (2004) Evaluation of polymorphism at microsatellite loci of spring durum wheat (Triticum durum Desf.) varieties and the use of SSR-based analysis in phylogenetic studies. Russ J Genet 40(10):1102–1110

    Article  CAS  Google Scholar 

  • Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genomics 280(4):275–285

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Mol Gen Genomics 275(2):193–203

    Article  CAS  Google Scholar 

  • Mori N, Liu YG, Tsunewaki K (1995) Wheat phylogeny determined by Rflp analysis of nuclear-DNA.2. Wild tetraploid wheats. Theor Appl Genet 90(1):129–134

    Article  CAS  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):U1130–U1232

    Article  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421(6919):170–172

    Article  PubMed  CAS  Google Scholar 

  • Nath J, McNay JW, Paroda CM, Gulati SC (1983) Implication of Triticum searsii as the B-genome donor to wheat using DNA hybridizations. Biochem Genet 21(7–8):745–760

    Article  PubMed  CAS  Google Scholar 

  • Nath J, Hanzel JJ, Thompson JP, McNay JW (1984) Additional evidence implicating Triticum searsii as the B-genome donor to wheat. Biochem Genet 22(1–2):37–50

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Hammer K, Heller J (eds) Hulled wheats proceedings of the first international workshop on hulled wheats promoting the conservation and use of underutilized and neglected crops 4, pp 41–100

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey—structure, evolution, and application in breeding. Theor Appl Genet 77(3):421–455

    Article  Google Scholar 

  • Nevo E, Golenberg E, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, Triticum-dicoccoides, in Israel. Theor Appl Genet 62(3):241–254

    Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39(1):70–82

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Stromberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310(5751):1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Gen Genomics 271(1):91–97

    Article  CAS  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:90–98

    Google Scholar 

  • Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, Batzer MA, Deininger PL (2001) Alu insertion polymorphisms for the study of human genomic diversity. Genetics 159(1):279–290

    PubMed  CAS  Google Scholar 

  • Sabot F, Simon D, Bernard M (2004) Plant transposable elements, with an emphasis on grass species. Euphytica 139(3):227–247

    Article  CAS  Google Scholar 

  • Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Gen 274(2):119–130

    CAS  Google Scholar 

  • Salem AH, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber RK, Witherspoon DJ, Jorde LB, Batzer MA (2003) Alu elements and hominid phylogenetics. Proc Natl Acad Sci USA 100(22):12787–12791

    Article  PubMed  Google Scholar 

  • Salina EA, Lim KY, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49(8):1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Sallares R, Brown TA (2004) Phylogenetic analysis of complete 5’ external transcribed spacers of the 18S ribosomal RNA genes of diploid Aegilops and related species (Triticeae, Poaceae). Genet Resour Crop Evol 51(7):701–712

    Article  CAS  Google Scholar 

  • Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9:555

    Article  PubMed  Google Scholar 

  • Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA.3. Intra- and interspecific variations of five Aegilops sitopsis species. Theor Appl Genet 92(8):928–934

    Article  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Res Bull Univ Missouri Agric Exp Stn 572:1–59

    Google Scholar 

  • Sears ER (1969) Wheat cytogenetics. Annu Rev Genet 3:451–468

    Article  Google Scholar 

  • Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y, Lin XY, Long LK, Han FP, Dong YS, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22(4):976–990

    Article  PubMed  CAS  Google Scholar 

  • Teoh SB, Miller TE, Reader SM (1983) Intraspecific variation in C-banded chromosomes of Aegilops-Comosa and A. Speltoides. Theor Appl Genet 65(4):343–348

    Article  Google Scholar 

  • Wang C, Shi SH, Wang JB, Zhong Y (2000a) Phylogenetic relationships of diploid species in Aegilops inferred from the ITS sequences of nuclear ribosomal DNA. Acta Botanica Sinica 42(5):507–511

    CAS  Google Scholar 

  • Wang GZ, Matsuoka Y, Tsunewaki K (2000b) Evolutionary features of chondriome divergence in Triticum (wheat) and Aegilops shown by RFLP analysis of mitochondrial DNAs. Theor Appl Genet 100(2):221–231

    Article  CAS  Google Scholar 

  • Wang JB, Wang C, Shi SH, Zhong Y (2000c) ITS regions in diploids of Aegilops (Poaceae) and their phylogenetic implications. Hereditas 132(3):209–213

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26(3):307–316

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  PubMed  CAS  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98(24):13778–13783

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Wang H, Zhang Y, Ray DA, Tosi AJ, Disotell TR, Batzer MA (2007a) A mobile element-based evolutionary history of guenons (tribe Cercopithecini). BMC Biol 5:5

    Article  PubMed  Google Scholar 

  • Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB (2007b) Mobile DNA elements in primate and human evolution. Yearb Phys Anthropol 50(50):2–19

    Article  Google Scholar 

  • Yang GJ, Nagel DH, Feschotte C, Hancock CN, Wessler SR (2009) Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 325(5946):1391–1394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Moshe Feldman and Sergei Volis for providing some of the plant material, and Avi Levy for helpful discussions. This work was supported by a grant from the Israeli Science Foundation (grant # 142/08) to K. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Kashkush.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaakov, B., Ceylan, E., Domb, K. et al. Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet 124, 1365–1373 (2012). https://doi.org/10.1007/s00122-012-1793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1793-y

Keywords

Navigation