Skip to main content
Log in

Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I

  • Published:
Mechanics of Composite Materials Aims and scope

In practice, the problems connected with the fatigue of composites are intricate because of their complex structure and the fatigue loading. Fatigue tests under different fiber orientation angles are time-consuming and also very expensive. Therefore, it is important to establish a technique to consider the fatigue damage at any fiber orientation angle without having to perform excessive amounts of testing. The general purpose is to elaborate a methodology for finding a globally optimum design of composite laminates subjected to in-plane loads. In this part of the study, the Fawaz–Ellyin model of fatigue life prediction is presented and further validated. The results obtained show that the model can be applied to optimization problems of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. T. Hahn and R. Y. Kim, “Fatigue behavior of composite laminate,” J. Compos. Mater., 10, 156–180 (1976).

    Article  Google Scholar 

  2. B. Harris, Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics. University of Bath, UK: Woodhead Publ. Limited (2008).

    Google Scholar 

  3. S. Sihn and J. W. Park “MAE: An Integrated Design Tool for Failure and Life Prediction of Composites,” J. Compos. Mater., 42, 1–22 (2008).

    Article  Google Scholar 

  4. K. L. Reifsnider, Fatigue of Composite Materials, Elsevier Sci. Publ. B. V. (1991).

  5. O. O. Ochoa and J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers (1992).

  6. Z. Fawaz and F. Ellyin, “A new methodology for the prediction of fatigue failure in multidirectional fiber-reinforced laminates,” Compos. Sci. Technol., 53, No. 1, 47–55 (1995).

    Article  Google Scholar 

  7. Z. Fawaz and F. Ellyin, “Fatigue failure model for fiber-reinforced materials under general loading conditions,” J. Compos. Mater., 28, No. 15, 1432–1451 (1994).

    Article  Google Scholar 

  8. W. Hwang, K. S. Han, “Fatigue of composites-fatigue modulus concept and life prediction,” J. Compos. Mater., 20, 154–165 (1986).

    Article  CAS  Google Scholar 

  9. Z. Hashin and A. Rotem, “Fatigue failure criterion for fiber-reinforced materials,” J. Compos. Mater., 7, 448–464 (1973).

    Article  Google Scholar 

  10. I. J. Toth, “Creep and fatigue behavior of unidirectional and cross-plied composites. Composite Materials: Testing and Design,” 1969, ASTM STP 460, pp. 236–253.

  11. J. Awerbuch and H. T. Hahn, “Off-axis fatigue of graphite/epoxy composite. Fatigue of Fibrous Composite Materials,” 1981, ASTM STP 723, pp. 243–273.

  12. H. El-Kadi and F. Ellyin, “Effect of stress ratio on the fatigue of unidirectional glass-fiber epoxy composite laminae,” Composites, 25, No.10, 917–924 (1994).

    Article  Google Scholar 

  13. E. W. Smith, “Cyclic Biaxial Deformation and Failure of a Glass-Fibre-Reinforced Composites,” Ph.D. Thesis, Cambridge University Press, 1976.

  14. A. Rotem and H.G. Nelson, “Failure of a laminated composite under tension-compression fatigue loading,” Compos. Sci. Technol., 36, No.1, 46–62 (1989).

    Article  Google Scholar 

  15. 15 W. Fuqiang and Y. Weixing, “A model of the fatigue life distribution of composite laminates based on their static strength distribution,” Chinese J. Aeronaut., 21, 241–246 (2008).

    Article  Google Scholar 

  16. W. F. Wu, L. J. Lee, and S. T. Choi, “A study of fatigue damage and fatigue life of composite laminates,” J. Compos. Mater., 30, No.1, 123–137 (1996).

    Article  CAS  Google Scholar 

  17. U. Icardi, S. Locatto, and A. Longo, “Assessment of recent theories for predicting failure of composite laminates,” Appl. Mech. Rev., 1–6, 76–86 (2007).

    Article  Google Scholar 

  18. M. Quaresimin, L. Susmel, and R. Talreja, “Fatigue behaviour and life assessment of composite laminates under multiaxial loadings,” Int. J. Fatigue, 32, No. 1, 2–16 (2010).

    Article  CAS  Google Scholar 

  19. J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” Proc. the fourth IEEE Int. Conf. on Neural Networks, 1995. p. 1942–1948.

  20. F. Ellyin and H. El-Kadi, “A fatigue failure criterion for fiber-reinforced composite laminae,” Compos. Struct., 15, 61–74 (1990).

    Article  Google Scholar 

  21. A. P. Mouritz, “A simple fatigue life model for three-dimensional fiber-polymer composites,” J. Compos. Mater., 40, No.5, 455–469 (2006).

    Article  CAS  Google Scholar 

  22. V. M. Harik and T. A. Bogetti, “Low cycle fatigue of composite laminates: A damage-mode-sensitive model,” J. Compos. Mater., 37, No.7, 597–610 (2003).

    Article  Google Scholar 

  23. M. Shokrieh and L.B. Lessard, “Progressive fatigue damage modeling of composite materials, part I: Modeling”, J Compos Mater, 34, No. 13, 1056–1080 (2000).

    Google Scholar 

  24. M. Shokrieh and L.B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments-I. modeling,” Int. J. Fatigue, 19, No.3, 201–207 (1997).

    Article  CAS  Google Scholar 

  25. J. Noda, M. Nakada, and Y. Miyano, “Fatigue life prediction under variable cyclic loading based on statistical linear cumulative damage rule for CFRP laminates,” J. Reinf. Plast. Compos., 26, No.7, 665–680 (2007).

    Article  CAS  Google Scholar 

  26. Z.-M. Huang, “Micromechanical life prediction for composite laminates,” Mech. Mater., 33, 185–199 (2001).

    Article  Google Scholar 

  27. J. A. Epaarachchi and P. D. Clausen, “An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies,” Compos. Part A- Appl. S, 34, 313–326 (2003).

    Article  Google Scholar 

  28. C. Kassapoglou, “Fatigue life prediction of composite structures under constant amplitude loading,” J. Compos. Mater., 41, No.22, 2737–2754 (2007).

    Article  Google Scholar 

  29. Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech.-T ASME, 47, 329–335 (1980).

    Article  Google Scholar 

  30. R. Apinis, “Acceleration of fatigue tests of polymer composite materials by using high-frequency loadings,” Mech. Compos. Mater., 40, No. 2, 107–118 (2004).

    Article  CAS  Google Scholar 

  31. P. P. Oldyrev and R. P. Apinis, “On the influence of loading frequency on the multicycle fatigue of organoplastics,” Mech. Compos. Mater., 4, 629–633 (1983).

    Google Scholar 

  32. W. Van Paepegem and J. Degrieck, “Experimental set-up for and numerical modeling of bending fatigue experiments on plain woven glass/epoxy composites,” Compos. Struct., 51, No. 1, 1–8 (2001).

    Article  Google Scholar 

  33. V. A. Limonov, V. G. Perevozchikov, and V. P. Tamuzh, “Fatigue of laminated composites with various reinforcement systems. 1. Experimental results,” Mech. Compos. Mater., 24, No. 5, 585–594 (1988).

    Article  Google Scholar 

Download references

Acknowledgment

This paper is based on the work supported by TUBITAK, The Scientific and Technological Research Council of Turkey, with code number 112M023. The author wishes to express his thanks to Professors V. Tamuzs and J. Jansons for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet H. Ertas.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 6, pp. 1011–1028, November-December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertas, A.H. Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I. Mech Compos Mater 48, 705–716 (2013). https://doi.org/10.1007/s11029-013-9314-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9314-x

Keywords

Navigation