Skip to main content
Log in

Investigation of the effect of distribution of the static strength on the fatigue failure of a layered composite by using the markov chain theory

  • Published:
Mechanics of Composite Materials Aims and scope

An analysis of correlation between the static strength and fatigue life of a layered glass-fiber composite is carried out by using the Markov chain theory. The parameters of the Markov model of fatigue life are connected with parameters of the local static strength of components of a composite. The distribution of the static strength of the composite and the possibilities of description of its fatigue life and static strength by using Markov chains is investigated on the basis of data obtained from static and fatigue tests of specimens made of a composite manufactured from a unidirectional UDO® glass fabric of type E and a polyether resin (HAVELpol.2). A numerical example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Kuttkat, “Leichtgewichte sind gefragt,” Maschinenmarkt, 113, No. 29, 102-107 (2007).

    Google Scholar 

  2. L. J. Broutman and S. Sahu, “A new theory to predict cumulative fatigue damage in glass-fabric-reinforced plastics,” Composite Materials: Testing and Design, ASTM STP, 497, 170-188 (1972).

    Google Scholar 

  3. P. C. Chou and R. Croman, “Degradation and sudden death models of fatigue of graphite/epoxy composites,” Composite Materials: Testing and Design, ASTM STP, 674, 431-54 (1979).

    Google Scholar 

  4. M. S. Found and M. Quaresimin, “Two-stage fatigue loading of woven carbon-fiber-reinforced laminates,” Fatigue Fract. Eng. Mater. Struct., 2, 17-26 (2003).

    Google Scholar 

  5. R. Chatys, I. Chatys, and M. Kleinhofs, “Modelling the effect of service conditions on the strength of fiber glass-reinforced polymer-matrix composite materials,” in: XI Seminar “Plastics in Machine Design,” Kraków, Poland, (2006), pp.123-126.

    Google Scholar 

  6. T. P. Philippidis and V. A. Passipoularidis, “Residual strength after fatigue in composites: theory vs. experiment,” Inter. J. Fatigue, 29, 2104-2116 (2007).

    Article  CAS  Google Scholar 

  7. Yu. Paramonov and J. Andersons, “A family of weakest link models for fiber strength distribution,” Composites: Pt A38, 1227-1233 (2007).

    Article  Google Scholar 

  8. Yu. Paramonov, R. Chatys, J. Andersons, and M. Kleinhofs, “Markov model оf fatigue оf a composite material with the Poisson process оf defect initiation,” Mech. Compos. Mater., 48, No. 2, 217-228 (2012).

    Article  Google Scholar 

  9. Yu. M. Paramonov, M. A. Kleinhof, and A. Yu. Paramonova, “Markov model of connection between the distribution of static strength and the fatigue life of a fibrous composite,” Mech. Compos. Mater., 42, No. 5, 431-442 (2006).

    Article  Google Scholar 

  10. Yu. Paramonov, R. Chatys, J. Andersons, and M. Kleinhofs, “Poisson process of defect initiation in fatigue of a composite material,” Int. Conf. “RelStat’2011,” Riga, Latvia, 20-21 October (2011).

  11. M. M. Shokrieh and F. A. Taheri-Behrooz, “Unified fatigue life model based on the energy method,” Compos. Struct., 75, 444-450 (2006).

    Article  Google Scholar 

  12. Catalog “Composites HAVEL”.

  13. C. R. Barker and M. Mazurkiewicz, “Evolution of on abrasive clearing system,” in: VI Int. Symp. Jet Cutting Technology. Paper K1, Surrey, UK (1982), pp. 429-446.

  14. A. W. Member and J. A. Koller, “Comparison between grit-blasting (AB), water jetting (UHP) and ultra-high pressure abrasive blasting (UHPAB) for steel surface preparation. Manuscript,” in: XVII Int. Conf. Water Jetting “Advances and Future Needs”, Mainz, Germany (2004), pp. 147-156.

  15. E. Wantuch, A. Karpiński, and R. Kot, “Efektywno ść przecinania stali wysokociśnieniowym strumieniem wodno-ś ciernym z zastosowaniem różnych ścierniw,” XXIII Naukowa Szkoła Obróbki Ściernej, Rzeszów/Myczkowce (2000), pp. 536-544.

  16. R. Chatys, “Modeling of the effect of laser treatment and machining on the strength and quality of composite materials,” Int. Conf. 13-17 February 2006, Moscov, Russia.

  17. R. Chatys, “Modeling of mechanical properties with the increasing demands in the range of qualities and repeatability of polymer composite elements,” in: Public. Monograph “Polymers and Constructional Composites,” Gliwice, Poland (2008), pp. 36-47.

  18. Report within the framework of the Project ESF Нр. 2009/0209/1DP/1.1.1.2.0/09/APIA/VIAA/114 “Fatigue Experimental — Finish Program,” Riga (2010).

  19. ASTM D638 — Standard Test Method for Tensile Properties of Plastics.

  20. H. T. Hahn and R. Y. Kim, “Proof testing of composite materials,” J. Compos. Mater., 9, 297-311 (1975).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Project ESF NO: 2009/0209/1DP/1.1.1.2.0/09/APIA/VIAA/114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chatys.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 48, No. 6, pp. 911-922 , November-December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatys, R. Investigation of the effect of distribution of the static strength on the fatigue failure of a layered composite by using the markov chain theory. Mech Compos Mater 48, 629–638 (2013). https://doi.org/10.1007/s11029-013-9307-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9307-9

Keywords

Navigation