Andréka, H., Németi, I., & Németi, P. (2009). General relativistic hypercomputing and foundation of mathematics.

*Natural Computing,*
*8*, 499–516.

MathSciNetMATHCrossRefBarker-Plummer, D. (2004). Turing machines. In E. N. Zalta (Ed.),

*The Stanford encyclopedia of philosophy.*
http://www.plato.stanford.edu/archives/spr2005/entries/turing-machine.

Beggs, E. J., & Tucker, J. V. (2006). Embedding infinitely parallel computation in Newtonian kinematics.

*Applied Mathematics and Computation,*
*178*, 25–43.

MathSciNetMATHCrossRefBenacerraf, P. (1962). Tasks, super-tasks, and the modern eleatics.

*Journal of Philosophy,*
*59*, 765–784.

CrossRefBlake, R. M. (1926). The paradox of temporal process.

*Journal of Philosophy,*
*23*, 645–654.

CrossRefBoolos, G. S., & Jeffrey, R. C. (1980). *Computability and logic* (2nd ed.). Cambridge: Cambridge University Press.

Calude, C. S., & Staiger, L. (2010). A note on accelerated Turing machines.

*Mathematical Structures in Computer Science,*
*20*, 1011–1017.

MATHCrossRefCohen, R. S., & Gold, A. Y. (1978). ω-computations on Turing machines.

*Theoretical Computer Science,*
*6*, 1–23.

MathSciNetMATHCrossRefCopeland, B. J. (1997). The broad conception of computation.

*American Behavioral Scientist,*
*40*, 690–716.

CrossRefCopeland, B. J. (1998a). Even Turing machines can compute uncomputable functions. In C. S. Calude, J. Casti, & M. J. Dinneen (Eds.), *Unconventional models of computation* (pp. 150–164). Singapore: Springer.

Copeland, B. J. (1998b). Super Turing-machines.

*Complexity,*
*4*, 30–32.

MathSciNetCrossRefCopeland, B. J. (1998c). Turing’s O-machines, Penrose, Searle, and the brain.

*Analysis,*
*58*, 128–138.

MathSciNetMATHCrossRefCopeland, B. J. (2000). Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind-machine issue.

*Journal of Philosophy,*
*97*, 5–32.

MathSciNetCrossRefCopeland, B. J. (2002a). Accelerating Turing machines.

*Minds and Machines,*
*12*, 281–300.

MATHCrossRefCopeland, B. J. (2002b). Hypercomputation. In B. J. Copeland (Ed.) (2002–2003), 461–502.

Copeland, B. J. (Ed.) (2002–2003). Hypercomputation. Special issue of *Minds and Machines*, *12(4)*, *13(1)*.

Copeland, B. J. (Ed.). (2004a).

*The essential Turing*. Oxford and New York: Oxford University Press.

MATHCopeland, B. J. (2004b). Colossus—its origins and originators.

*IEEE Annals of the History of Computing,*
*26*, 38–45.

MathSciNetCrossRefCopeland, B. J. (2004c). Hypercomputation: Philosophical issues.

*Theoretical Computer Science,*
*317*, 251–267.

MathSciNetMATHCrossRefCopeland, B. J. (2005). Comments from the chair: Hypercomputation and the Church-Turing thesis. Paper delivered at the American Philosophical Society Eastern Division Meeting, New York City.

Copeland, B. J. (2010). Colossus: Breaking the German “Tunny” code at Bletchley Park. An illustrated history.

*The Rutherford Journal: The New Zealand Journal for the History and Philosophy of Science and Technology, 3*,

http://www.rutherfordjournal.org.

Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science.

*Scientific American,*
*280*, 76–81.

CrossRefCopeland, B. J., & Shagrir, O. (2007). Physical computation: How general are Gandy’s principles for mechanisms.

*Minds and Machines,*
*17*, 217–231.

CrossRefCopeland, B. J., & Sylvan, R. (1999). Beyond the universal Turing machine.

*Australasian Journal of Philosophy,*
*77*, 46–66.

CrossRefDavies, B. E. (2001). Building infinite machines.

*British Journal for the Philosophy of Science,*
*52*, 671–682.

MathSciNetMATHCrossRefDavis, M. (1958).

*Computability and unsolvability*. New York: McGraw-Hill.

MATHEarman, J., & Norton, J. D. (1993). Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes.

*Philosophy of Science,*
*60*, 22–42.

MathSciNetCrossRefEarman, J., & Norton, J. D. (1996). Infinite pains: The trouble with supertasks. In A. Morton & S. P. Stich (Eds.), *Benacerraf and his critics* (pp. 231–261). Oxford: Blackwell.

Fearnley, L. G. (2009). *On accelerated Turing machines*. Honours thesis in Computer Science, University of Auckland.

Fraser, R., & Akl, S. G. (2008). Accelerating machines: A review.

*International Journal of Parallel Emergent and Distributed Systems,*
*23*, 81–104.

MathSciNetMATHCrossRefHamkins, J. D. (2002). Infinite time Turing machines. In B. J. Copeland (Ed.) (2002–2003), 521–539.

Hamkins, J. D., & Lewis, A. (2000). Infinite time Turing machines.

*Journal of Symbolic Logic,*
*65*, 567–604.

MathSciNetMATHCrossRefHogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time?

*Foundations of Physics Letters,*
*5*, 173–181.

MathSciNetCrossRefHogarth, M. L. (1994). Non-Turing computers and non-Turing computability. *PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association,*
*1*, 126–138.

Hogarth, M. L. (2004). Deciding arithmetic using SAD computers.

*British Journal for the Philosophy of Science,*
*55*, 681–691.

MathSciNetMATHCrossRefKripke, S. A. (1959). A completeness theorem in modal logic.

*Journal of Symbolic Logic,*
*24*, 1–14.

MathSciNetMATHCrossRefLewis, H. R., & Papadimitriou, C. H. (1981).

*Elements of the theory of computation*. Englewood Cliffs, NJ: Prentice-Hall.

MATHNewman, M. H. A. (1955). Alan Mathison Turing, 1912–1954.

*Biographical Memoirs of Fellows of the Royal Society,*
*1*, 253–263.

CrossRefPitowsky, I. (1990). The physical Church thesis and physical computational complexity. *Iyyun,*
*39*, 81–99.

Post, E. L. (1936). Finite combinatory processes–formulation 1.

*Journal of Symbolic Logic,*
*1*, 103–105.

MATHCrossRefPotgieter, P. H., & Rosinger, E. E. (2010). Output concepts for accelerated Turing machines. *Natural Computing, 9*, 853–864.

Quine, W. V. O. (1960).

*Word and object*. Cambridge, MA: MIT Press.

MATHRussell, B. A. W. (1915). *Our knowledge of the external world as a field for scientific method in philosophy*. Chicago: Open Court.

Schaller, M., & Svozil, K. (2009). Zeno squeezing of cellular automata. arXiv:0908.0835.

Shagrir, O. (2004). Super-tasks, accelerating Turing machines and uncomputability.

*Theoretical Computer Science,*
*317*, 105–114.

MathSciNetMATHCrossRefShagrir, O. (2011). Supertasks do not increase computational power. *Natural Computing* (forthcoming).

Shagrir, O., & Pitowsky, I. (2003). Physical hypercomputation and the Church-Turing thesis. In B. J. Copeland (Ed.) (2002–2003), 87–101.

Steinhart, E. (2002). Logically possible machines.

*Minds and Machines,*
*12*, 259–280.

MATHCrossRefSteinhart, E. (2003). The physics of information. In L. Floridi (Ed.), *The Blackwell guide to the philosophy of computing and information* (pp. 178–185). Oxford: Blackwell.

Stewart, I. (1991). Deciding the undecidable.

*Nature,*
*352*, 664–665.

CrossRefSvozil, K. (1998). The Church-Turing thesis as a guiding principle for physics. In C. S. Calude, J. Casti, & M. J. Dinneen (Eds.), *Unconventional models of computation* (pp. 371–385). London: Springer.

Thomson, J. F. (1954). Tasks and super-tasks.

*Analysis,*
*15*, 1–13.

CrossRefThomson, J. F. (1970). Comments on professor Benacerraf’s paper. In W. C. Salmon (Ed.), *Zeno’s paradoxes* (pp. 130–138). Indianapolis: Bobbs-Merrill.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society, Series 2, 42*, 230–265. (In *The essential Turing* (Copeland 2004a); page references are to the latter.)

Turing, A. M. (1948). Intelligent machinery. National Physical Laboratory report. In

*The essential Turing* (Copeland 2004a). A digital facsimile of the original document may be viewed in the Turing Archive for the History of Computing.

http://www.AlanTuring.net/intelligent_machinery.

Turing, A. M. (1950). Computing machinery and intelligence. *Mind, 59*, 433–60. (In *The essential Turing* (Copeland 2004a); page references are to the latter.)

Weyl, H. (1927).

*Philosophie der Mathematik und Naturwissenschaft*. Munich: R. Oldenbourg.

MATHWeyl, H. (1949).

*Philosophy of mathematics and natural science*. Princeton: Princeton University Press.

MATH