Skip to main content
Log in

Dead-zone effect on the performance of state estimators for hydraulic actuators

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

State estimation in hydraulic actuators is a fundamental technique for fault detection and it is also a valid tool useful to reduce the installation of sensors. The performance of the linear/linearization based techniques for the state estimation is strongly limited due to hard nonlinearities that characterize hydraulic actuator. One of the most common hard nonlinearities in hydraulic actuator is the dead-zone. This paper focuses on an alternative nonlinear estimation method that is able to fully take into account dead-zone hard nonlinearity and measurement noise. The estimator is based on the state-dependent-Riccati-equation (SDRE). A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Several simulations have been conducted in order to analyse the effect of the dead-zone characteristic on the novel estimator performance, showing comparisons with the largely used extended Kalman filter (EKF). Numerical results demonstrate the effectiveness of SDRE based technique in applications characterized by extended dead-zone for which the EKF method provides poor results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

P T :

Tank pressure

y :

Movable mass displacement

m :

Load mass

F f :

Friction force

A p :

Annulus area of the actuator piston

P L :

Load pressure

P A , P B :

Pressures in the chambers of the cylinder

F c :

Coulomb friction force

F c0 :

Static value of the Coulomb friction force

g :

Gravitational acceleration

Z :

Net tangential force

V 0 :

Volume of each chamber for the centred position of the piston

Q L :

Load flow

Q A , Q B :

Load flow in the two chambers of the cylinder

v e :

Displacement signal of the spool valve

v en , v ep , k q0, k qn , k qp :

Parameters of the dead-zone function

v e0 :

Spool position bias

k e :

Input gain

u :

Valve command

x :

State vector

\(\tilde{v}_{e}\) :

Auxiliary variable

\(\Delta v_{e}\) :

Auxiliary constant

\({\mathbf{u}}\) :

Input vector

f, h :

Nonlinear functions

\({\mathbf{Q}}_{k}\) :

Covariance of the process noise for the EKF

z :

Measurement vector

\({\mathbf{g}}_{k}\) :

Gaussian white measurement noise for the EKF

\({\mathbf{R}}_{k}\) :

Covariance of the measurement noise for the EKF

\({\mathbf{K}}_{k}\) :

Filter gain of the EKF

t :

Time

\(\left({\hat{\bullet}} \right)\) :

Estimate

E :

Expected value

\({\mathbf{x}}_{0}\) :

Initial condition on the state vector

\(P_{0}^{{}}\) :

Initial condition on the error covariance

P k :

Error covariance for the EKF

A k−1, L k−1, H k , M k :

Partial derivative matrices for the EKF

\({\mathbf{F}}({\mathbf{x}}(t),{\mathbf{u}}(t))\), \({\mathbf{H}}\left( {{\mathbf{x}}(t),{\mathbf{u}}(t)} \right)\) :

Input and state dependent matrices of the SDC form

Q :

Covariance of the process noise for the SDREF

g :

Gaussian white measurement noise for the SDREF

R :

Covariance of the measurement noise for the SDREF

\({\mathbf{K}}_{{\mathbf{f}}}\) :

Filter gain of the SDREF

P :

Solution of the algebraic Riccati equation

σ:

Viscous friction coefficient

μ :

Coulombian friction coefficient of the linear guide

μ 0 :

Static value of the Coulombian friction coefficient

β :

Effective Bulk modulus

Ψ :

Dead-zone function

ω nv :

Natural frequency of the proportional valve

ξ v :

Damping ratio of the proportional valve

\({\varvec{\uppsi}}_{k}\) :

Process noise for the EKF

\({\varvec{\uppsi }}\) :

Process noise for the SDREF

ε :

Auxiliary function

−:

A priori estimate

+:

A posteriori estimate

k − 1:

Related to time tk−1

k :

Related to time tk

References

  1. Strano S, Terzo M (2014) A multi-purpose seismic test rig control via a sliding mode approach. Struct Control Health Monit 21(8):1193–1207

    Article  Google Scholar 

  2. Pagano S, Russo M, Strano S, Terzo M (2014) Seismic isolator test rig control using high-fidelity non-linear dynamic system modelling. Meccanica 49(1):169–179

    Article  MATH  Google Scholar 

  3. Calabrese A, Serino G, Strano S, Terzo M (2013) Investigation of the seismic performances of an FRBs base isolated steel frame through hybrid testing. In: Lecture notes in engineering and computer science: proceedings of the World congress on engineering, London, pp 1974–1978

  4. Silva CW, Lawrence PD (1998) Tracking control of an electrohydraulic manipulator in the presence of friction. IEEE Trans Control Syst Technol 6(3):401–411

    Article  Google Scholar 

  5. Alleyne A (1996) Nonlinear force control of an electro-hydraulic actuator. In: Proceedings of Japan/USA symposium on flexible automation, Boston, pp 193–200

  6. Alleyne A, Hedrick JK (1995) Nonlinear adaptive control of active suspension. IEEE Trans Control Syst Technol 3(1):94–101

    Article  Google Scholar 

  7. Mohanty A, Gayaka S, Yao B (2012) An adaptive robust observer for velocity estimation in an electro-hydraulic system. Int J Adapt Control Signal Process 26:1076–1089

    Article  MathSciNet  MATH  Google Scholar 

  8. DeBoer C, Yao B (2001) Velocity control of hydraulic cylinders with only pressure feedback. In: ASME international mechanical engineers congress and exposition (IMECE), IMECE01/DSC-2B-3, pp 1–9

  9. Virvalo T (1997) Nonlinear model of analog valve. In: Proceedings of the 5th Scandinavian international conference of fluid power, vol 3, Linköping, pp 199–213

  10. Tao G, Kokotovic PV (1996) Adaptative control of systems with actuator and sensor nonlinearities. Wiley, New York

    MATH  Google Scholar 

  11. Sobczyk A (2000) Construction machines and manipulators: modern designs and research problems. In: Garbacik A, Stecki J (eds) Developments in fluid power control of machinery and manipulators. Fluid Power Net Publication, Cracow, pp 345–364

    Google Scholar 

  12. Cunha MAB, Guenther R, De Pieri ER, Negri VJ (2000) A cascade strategy using nonlinear control techniques applied to a hydraulic actuator. In: Proceedings of the 1st fluid power net international—Ph.D. symposium, pp 57–70

  13. Bu F, Yao B (2000) Nonlinear adaptive robust control of actuators regulated by proportional directional control valves with deadband nonlinear flow gains. In: Proceedings of the American control conference, Chicago, pp 4129–4133

  14. Cunha MAB, Guenther R, De Pieri ER, Negri VJ (2002) Design of cascade controllers for a hydraulic actuator. Int J Fluid Power 3(2):35–46

    Article  Google Scholar 

  15. Ficuciello F, Romano A, Villani L, Siciliano B (2014) Cartesian impedance control of redundant manipulators for human–robot co-manipulation. In: IEEE international conference on intelligent robots and systems, art. no. 6942847, pp 2120–2125

  16. Yu D (1995) Fault Diagnosis for a hydraulic drive system using a parameter estimation method. Control Eng Pract 5(9):1283–1291

    Article  Google Scholar 

  17. Preston GJ, Sheilds DN, Daley S (1996) Application of a robust nonlinear fault detection observer to a hydraulic process. In: Proceedings of UKACC international conference control, pp 1484–1489

  18. Hammouri H, Kabore P, Othman S, Biston J (2002) Failure diagnosis and nonlinear observer—application to a hydraulic process. J Frankl Inst 339:455–478

    Article  MathSciNet  MATH  Google Scholar 

  19. Frank PM (1994) Online fault detection in uncertain nonlinear systems using diagnostic observers: a survey. Int J Syst Sci 25(12):2129–2154

    Article  MATH  Google Scholar 

  20. An L, Sepehri N (2003) Hydraulic actuator circuit fault detection using extended Kalman filter. In: Proceedings of the American control conference, pp 4261–4266

  21. Khoshzaban M, Sassani F, Lawrence PD (1997) Online state and parameter estimation of an electrohydraulic valve for intelligent monitoring. In: IEEE/ASME international conference on advanced intelligent mechatronics, pp 141–14

  22. Rajamani R, Karl Hedrick J (1995) Adaptive observers for active automotive suspensions: theory and experiments. IEEE Trans Control Syst Technol 3(1):86–93

    Article  Google Scholar 

  23. Garimella P, Yao B (2003), Nonlinear adaptive robust observer design for a class of nonlinear systems. In: Proceedings of the American control conference, Denver, pp 4391–4396

  24. Garimella P, Yao B (2002) Nonlinear adaptive robust observer for velocity estimation of hydraulic cylinders using pressure measurement only. In: Proceedings of the IMECE’02, New Orleans, pp 1–10

  25. Cloutier JR (1994) Adaptive matched augmented proportional navigation. In: Proceedings of the AIAA Missile Sciences conference, pp 70–79

  26. Cloutier JR (1996) Time-to-go-less guidance with cross channel couplings. In: Proceedings of the AIAA Missile Science conference, Monterey

  27. Strano S, Terzo M (2015) A SDRE-based tracking control for a hydraulic actuation system. Mech Syst Signal Process 60–61:715–726

    Article  Google Scholar 

  28. Nemra A, Aouf N (2010) Robust INS/GPS sensor fusion for UAV localization using SDRE nonlinear filtering. IEEE Sens J 10(4):789–798

    Article  Google Scholar 

  29. Mracek CP, Cloutier JR (1996) Missile longitudinal autopilot design using the state dependent Riccati equation method. In: Proceedings of the international conference nonlinear problems in aviation and aerospace, Daytona Beach, pp 387–396

  30. Cloutier JR, D’Souza CN, Mracek CP (1996) Nonlinear regulation and nonlinear H2 control via the state-dependent Riccati equation technique; part 1, theory; part 2, examples, Proceedings of the international conference nonlinear problems in aviation and aerospace, Daytona Beach

  31. Mracek CP, Cloutier JR, D’Souza CN (1996) A new technique for nonlinear estimation. In: Proceedings of the IEEE conference control applications, Dearborn, pp 338–343. doi: 10.1109/CCA.1996.558760

  32. Simon D (2006) Optimal state estimation. Wiley-Interscience, New York

    Book  Google Scholar 

  33. Iodice P, Dentice D’Accadia M, Abagnale C, Cardone M (2016) Energy, economic and environmental performance appraisal of a trigeneration power plant for a new district: advantages of using a renewable fuel. Appl Therm Eng 95(25):330–338

    Article  Google Scholar 

  34. Bonchis A, Corke P, Rye D (1999) A pressure-based, velocity independent, friction model for asymmetric hydraulic cylinders. In: Proceedings of the IEEE international conference on robotics and automation, Detroit, vol 3, pp 1746–1751

  35. Pagano S, Russo R, Strano S, Terzo M (2013) Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig. Mech Syst Signal Process 35(1–2):255–278

    Article  ADS  Google Scholar 

  36. Merritt HE (1967) Hydraulic control systems. Wiley, New York

    Google Scholar 

  37. Márton L, Fodor S, Sepehri N (2011) A practical method for friction identification in hydraulic actuators. Mechatronics 21(1):350–356

    Article  Google Scholar 

  38. Cloutier JR (1997) Navigation and control branch U.S. air force armament directorate. In: Proceedings of American control conference, Albuquerque

  39. Cloutier JR, Mracek CP, Ridgely DB, Hammett KD (1998) State dependent Riccati equation techniques: theory and applications. In: Proceedings of the American control conference workshop

  40. Çimen T (2012) Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. AIAA J Guid Control Dyn 35(4):1025–1047

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Terzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abagnale, C., Aggogeri, F., Borboni, A. et al. Dead-zone effect on the performance of state estimators for hydraulic actuators. Meccanica 52, 2189–2199 (2017). https://doi.org/10.1007/s11012-016-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0563-3

Keywords

Navigation