Skip to main content
Log in

Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work, elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites are investigated using a 3-dimensional micromechanics-based approach. The main advantage of the proposed micromechanical model is its ability to give closed-form formulation for predicting the effective properties of nanocomposites. In the micromechanical modeling, the interphase formed due to non-boned van der Waals interaction between the continuous CNT and polymer matrix is considered through employing an individual representative volume element. The validity of the model is examined by comparing its results with other theoretical approaches and experimental data available in the literature. The effects of various types of CNTs arrangement in the matrix, i.e. uniform distribution and different functionally graded distributions on the elastic, thermoelastic and viscoelastic properties of polymer nanocomposites are investigated in detail. Furthermore, random arrangement of CNTs in the matrix is modelled. The influences of CNT/polymer matrix interphase and CNT volume fraction on the effective properties of nanocomposites are also studied. Finally, the viscoelastic response of nanocomposites under multiaxial loading is extracted and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  ADS  Google Scholar 

  2. Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43:263–270

    Article  MATH  Google Scholar 

  3. Ansari R, Mirnezhad M, Sadeghi F (2015) Elastic properties of chiral carbon nanotubes under oxygen adsorption. Phys E 70:129–134

    Article  Google Scholar 

  4. Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45:43–51

    Article  MATH  Google Scholar 

  5. Ansari R, Mirnezhad M, Sahmani S (2013) An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48:1355–1367

    Article  MathSciNet  MATH  Google Scholar 

  6. Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505

    Article  Google Scholar 

  7. Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38:884–907

    Article  Google Scholar 

  8. Anumandla V, Gibson RF (2006) A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos Part A Appl Sci Manuf 37:2178–2185

    Article  Google Scholar 

  9. So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43:3750–3756

    Article  Google Scholar 

  10. Shokrieh MM, Rafiee R (2010) Stochastic multi-scale modeling of CNT/polymer composites. Comput Mater Sci 50:437–446

    Article  Google Scholar 

  11. Shady E, Gowayed Y (2010) Effect of nanotube geometry on the elastic properties of nanocomposites. Compos Sci Technol 70:1476–1481

    Article  Google Scholar 

  12. Ngabonziza Y, Li J, Barry CF (2011) Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech 220:289–298

    Article  MATH  Google Scholar 

  13. Yanase K, Moriyama S, Ju JW (2013) Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech 224:1351–1364

    Article  MATH  Google Scholar 

  14. Rouhi S, Alizadeh Y, Ansari R (2014) Molecular dynamics simulations of the single-walled carbon nanotubes/poly (phenylacetylene) nanocomposites. Superlattices Microstruct 72:204–218

    Article  ADS  Google Scholar 

  15. Kundalwal SI, Ray MC (2014) Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos Part B Eng 57:199–209

    Article  Google Scholar 

  16. Kundalwal SI, Meguid SA (2015) Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur J Mech A Solids 53:241–253

    Article  MathSciNet  Google Scholar 

  17. Li K, Gao XL, Roy AK (2006) Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech Adv Mater Struct 13:317–328

    Article  Google Scholar 

  18. Jia Y, Peng K, Gong XL, Zhang Z (2011) Creep and recovery of polypropylene/carbon nanotube composites. Int J Plast 27:1239–1251

    Article  MATH  Google Scholar 

  19. Starkova O, Buschhorn ST, Mannov E, Schulte K, Aniskevich A (2012) Creep and recovery of epoxy/MWCNT nanocomposites. Compos Part A Appl Sci Manuf 43:1212–1218

    Article  Google Scholar 

  20. Pan Y, Weng GJ, Meguid SA, Bao WS, Zhu ZH, Hamouda AMS (2013) Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech Mater 58:1–11

    Article  Google Scholar 

  21. Montazeri A (2013) The effect of functionalization on the viscoelastic behavior of multi-wall carbon nanotube/epoxy composites. Mater Des 45:510–517

    Article  Google Scholar 

  22. Feng C, Jiang L (2013) Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos Part A Appl Sci Manuf 47:143–149

    Article  Google Scholar 

  23. Rouhi S, Alizadeh Y, Ansari R (2014) On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations. Appl Surf Sci 292:958–970

    Article  ADS  Google Scholar 

  24. Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotube/polyimide nanocomposites using multi-scale simulation. Compos Part B Eng 41:106–115

    Article  Google Scholar 

  25. Liew KM, Lei ZX, Zhang LW (2015) Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos Struct 120(2):90–97

    Article  Google Scholar 

  26. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91:9–19

    Article  Google Scholar 

  27. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94(4):1450–1460

    Article  Google Scholar 

  28. Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct 111:205–212

    Article  Google Scholar 

  29. Lei ZX, Zhang LW, Liew KM (2015) Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. Compos Part B Eng 77:291–303

    Article  Google Scholar 

  30. Zhang LW, Lei ZX, Liew KM (2015) Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos Struct 122:172–183

    Article  Google Scholar 

  31. Zhang LW, Lei ZX, Liew KM (2015) Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. Appl Math Comput 256:488–504

    MathSciNet  MATH  Google Scholar 

  32. Alibeigloo A, Emtehani A (2015) Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica 50(1):61–76

    Article  MathSciNet  MATH  Google Scholar 

  33. García-Macías E, Castro-Triguero R, Flores EIS, Friswell MI, Gallego R (2016) Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos Struct 140:473–490

    Article  Google Scholar 

  34. Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2015) Interphase effects on the thermo-mechanical properties of three-phase composites. Proc Inst Mech Eng Part C J Mech Eng Sci. doi:10.1177/0954406215612830

    Google Scholar 

  35. Mahmoodi MJ, Aghdam MM (2011) Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—a micromechanical approach. Mater Sci Eng A 528:7983–7990

    Article  Google Scholar 

  36. Mahmoodi MJ, Aghdam MM, Shakeri M (2010) Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater Des 31:829–836

    Article  Google Scholar 

  37. Ansari R, Hassanzadeh-Aghdam MK, Mahmoodi MJ (2016) Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites. Acta Mech. doi:10.1007/s00707-016-1666-6

    MathSciNet  Google Scholar 

  38. Kundalwal SI, Ray MC (2012) Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur J Mech A Solids 36:191–203

    Article  Google Scholar 

  39. Dhala S, Ray MC (2015) Micromechanics of piezoelectric fuzzy fiber-reinforced composite. Mech Mater 81:1–17

    Article  ADS  Google Scholar 

  40. Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl Phys Lett 80:4647–4649

    Article  ADS  Google Scholar 

  41. Snipes JS, Robinson CT, Baxter SC (2011) Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J Compos Mater 45:2537–2546

    Article  Google Scholar 

  42. Boutaleb S, Zairi F, Mesbah A, Nait-Abdelaziz M, Gloague JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46:1716–1726

    Article  MATH  Google Scholar 

  43. Kirtania S, Chakraborty D (2009) Evaluation of thermoelastic properties of carbon nanotube-based composites using finite element method. In: Proceedings of the international conference on mechanical engineering (AM-13), Dhaka, Bangladesh

  44. Zhiguo R, Ying Y, Jianfeng L, Zhongxing Q, Lei Y (2014) Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites. Chin J Aeronaut 27:1180–1187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Hassanzadeh-Aghdam, M.K. Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52, 1625–1640 (2017). https://doi.org/10.1007/s11012-016-0512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0512-1

Keywords

Navigation