Skip to main content
Log in

Axisymmetric stagnation-point flow and heat transfer due to a stretching/shrinking vertical plate with surface second-order velocity slip

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The axisymmetric stagnation-point flow over a stretching/shrinking vertical surface with a second-order velocity slip and temperature jump is studied. By using a transformation of variables, the partial differential equations are transformed into ordinary (similarity) differential equations. These equations, along with the corresponding boundary conditions, are solved numerically using the boundary-value problems solver bvp4c in the Matlab software. Dual (first and second) solutions are found for these similarity equations arising from critical values of the dimensionless parameters. The effects of these parameters on the velocity and the temperature distributions as well as the skin friction coefficient and the Nusselt number are discussed. The dependence of the critical points on the governing parameters is also treated with the asymptotic nature of the solution for large values of the parameters being derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hiemenz K (1911) Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytech J 326:321–324

    Google Scholar 

  2. Homann F (1936) Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um den Kugel. Z Angew Math Mech 16:153–164

    Article  MATH  Google Scholar 

  3. Howarth L (1951) The boundary layer in three dimensionless flow—part II, the flow near a stagnation point. Philos Mag 42:1433–1440

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiam TC (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63:2443–2444

    Article  ADS  Google Scholar 

  5. Mahapatra TR, Gupta AS (2001) Magnetohydrodynamic stagnation point flow towards a stretching sheet. Acta Mech 152:191–196

    Article  MATH  Google Scholar 

  6. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  ADS  Google Scholar 

  7. Nazar R, Amin N, Filip D, Pop I (2004) Stagnation-point flow of a micropolar fluid towards a stretching sheet. Int J Non-Linear Mech 39:1227–1235

    Article  MATH  Google Scholar 

  8. Reza M, Gupta AS (2005) Steady two-dimensional oblique stagnation point flow towards a stretching surface. Fluid Dyn Res 37:334–340

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lok YY, Amin N, Pop I (2006) Non-orthogonal stagnation point flow towards a stretching sheet. Int J Non-Linear Mech 41:622–627

    Article  Google Scholar 

  10. Lok YY, Pop I, Ingham DB, Amin N (2009) Mixed convection flow of a micropoalr fluid near a non-orthogonal stagnation point on a stretching vertical sheet. Int J Numer Methods Heat Fluid Flow 19:459–483

    Article  Google Scholar 

  11. Goldstein J (1965) On backward boundary layers and flow in converging passages. J Fluid Mech 21:33–45

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Baird RJ, Baird DT (1986) Industrial plastics. The Goodheart-Willcox Co., Inc., South Holland

    Google Scholar 

  13. Cheremisinoff NP (1991) Emerging technologies and applications for polymers. Polym Plast Technol Eng 30:1–26

    Article  Google Scholar 

  14. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Nonlinear Mech 43:377–382

    Article  Google Scholar 

  15. Ishak A, Lok YY, Pop I (2010) Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem Eng Commun 197:1417–1427

    Article  Google Scholar 

  16. Bhattacharyya K, Layek GC (2011) Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation. Int J Heat Mass Transf 54:302–307

    Article  MATH  Google Scholar 

  17. Bhattacharyya K, Mukhopadhyay S, Layek GC (2011) Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. Int J Heat Mass Transf 54:308–313

    Article  MATH  Google Scholar 

  18. Lok YY, Ishak A, Pop I (2011) MHD stagnation-point flow towards a shrinking sheet. Int J Numer Methods Heat Fluid Flow 21:61–72

    Article  Google Scholar 

  19. Rosca AV, Rosca NC, Pop I (2014) Note on dual solutions for the mixed convection boundary layer flow close to the lower stagnation point of a horizontal circular cylinder: case of constant surface heat flux. Sains Malays 43(8):1239–1247

    Google Scholar 

  20. Zhu J, Zheng L, Zhang X (2011) Hydrodynamic plane and axisymmetric slip stagnation-point flow with thermal radiation and temperature jump. J Mech Sci Technol 25:1837–1844

    Article  Google Scholar 

  21. Yoshimura A, Pridhomme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32:53–67

    Article  ADS  Google Scholar 

  22. Derek C, Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12

    Article  Google Scholar 

  23. Soltani F, Yilmazer U (1998) Slip velocity and slip layer thickness in flow of concentrated suspensions. J Appl Polym Sci 70:515–522

    Article  Google Scholar 

  24. Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  ADS  Google Scholar 

  25. Wang CY (2003) Stagnation flows with slip: exact solutions of the Navier–Stokes equations. Z Angew Math Phys 54:184–189

    Article  MathSciNet  MATH  Google Scholar 

  26. Ariel PD (2007) Axisymmetric flow due to a stretching sheet with partial slip. Comput Math Appl 54:1169–1183

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fang T, Aziz A (2010) Viscous flow with second-order slip velocity over a stretching sheet. Z Naturforsch 65a:1087–1092

    ADS  Google Scholar 

  28. Zaman H (2013) Hall effects on the unsteady incompressible MHD fluid flow with slip conditions and porous walls. Appl Math Phys 1:31–38

    Google Scholar 

  29. Aman F, Ishak A, Pop I (2013) Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Int Commun Heat Mass Transf 47:68–72

    Article  Google Scholar 

  30. Sajid M, Mahmood K, Abbas Z (2012) Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface. Chin Phys Lett 29:024702-1–024702-4

    Article  ADS  Google Scholar 

  31. Malvandi A, Hedayati F, Ganji DD (2014) Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technol 253:377–384

    Article  Google Scholar 

  32. Fang T, Zhang J, Yao S (2009) Slip MHD viscous flow over a stretching sheet—an exact solution. Commun Nonlinear Sci Numer Simul 14:3731–3737

    Article  ADS  Google Scholar 

  33. Hafidzuddin EH, Nazar R, Ariffin NM, Pop I (2015) Numerical solution of boundary layer flow over an exponentially stretching/shrinking sheet with generalized slip velocity. Int J Math Comput Nat Phys Eng 9:0001145

    Google Scholar 

  34. Wu L (2008) A slip model for rarefied gas flows at arbitrary Knudsen number. Appl Phys Lett 93:253103

    Article  ADS  Google Scholar 

  35. Fukui S, Kaneto R (2008) A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. J Tribol 112:78–83

    Article  Google Scholar 

  36. Singh G, Chamka AJ (2013) Dual solutions for second-order slip flow and heat transfer on a vertical permeable shrinking sheet. Ain Shams Eng J 4:911–917

    Article  Google Scholar 

  37. Rosca AV, Pop I (2013) Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second-order slip. Int J Heat Mass Transf 60:355–364

    Article  Google Scholar 

  38. Fang T, Yao S, Zhang J, Aziz A (2010) Viscous flow over a shrinking sheet with a second-order slip flow model. Commun Nonlinear Sci Numer Simul 15:1831–1842

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27:657–706

    Article  ADS  Google Scholar 

  40. Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96:066001

    Article  ADS  Google Scholar 

  41. Ng CO, Wang CY (2009) Stokes shear flow over a grating: implications for superhydrophobic slip. Phys Fluids 21:013602

    Article  ADS  MATH  Google Scholar 

  42. Wang CY (2003) Flow over a surface with parallel grooves. Phys Fluids 15:1114–1121

    Article  ADS  MATH  Google Scholar 

  43. Wang CY (2006) Stagnation slip flow and heat transfer on a moving plate. Chem Eng Sci 61:7668–7672

    Article  ADS  Google Scholar 

  44. Wang CY, Ng CO (2013) Stagnation flow on a heated vertical plate with surface slip. J Heat Transf 135:074505-1–074505-8

    Google Scholar 

  45. Singh G, Makinde OD (2015) Mixed convection slip flow with temperature jump along a moving plate in presence of free stream. Therm Sci 19:119–128

    Article  Google Scholar 

  46. Deissler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694

    Article  MATH  Google Scholar 

  47. Shiping Yu, Ameel TA (2001) Slip-flow heat transfer in rectangular microchannels. Int J Heat Mass Transf 44:4225–4234

    Article  MATH  Google Scholar 

  48. Rosca NC, Pop I (2013) Mixed convection stagnation point flow past a vertical flat plate with a second order slip: heat flux case. Int J Heat Mass Transf 65:102–109

    Article  Google Scholar 

  49. Slater LJ (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  50. Merkin JH, Mahmood T (1989) Mixed convection boundary layer similarity solutions: prescribed wall heat flux. J Appl Math Phys (ZAMP) 20:51–68

    Article  MathSciNet  MATH  Google Scholar 

  51. Merkin JH, Pop I (2010) Natural convection boundary-layer flow in a porous medium with temperature dependent boundary conditions. Transp Porous Media 85:397–414

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to the anonymous reviewers for their valuable comments and suggestions. AI acknowledges the financial support received from the Universiti Kebangsaan Malaysia (ProjectCode: DIP-2015-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Merkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soid, S.K., Merkin, J., Ishak, A. et al. Axisymmetric stagnation-point flow and heat transfer due to a stretching/shrinking vertical plate with surface second-order velocity slip. Meccanica 52, 139–151 (2017). https://doi.org/10.1007/s11012-016-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0409-z

Keywords

Navigation