Skip to main content
Log in

Unsteady heat transfer in non-axisymmetric Homann stagnation-point flows

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An analysis is carried out to study the unsteady non-axisymmetric Homann’s stagnation-point flow and heat transfer of an incompressible viscous fluid over a rigid plate in the presence of time-dependent free stream. The temperature of the plate is assumed to be higher than the ambient fluid temperature. Using similarity variables, the governing partial differential equations are transformed into nonlinear ordinary differential equations. These equations are then solved numerically using fourth-order Runge–Kutta method with shooting technique. The effects of the shear-to-strain rate ratio parameter \(\gamma \) (\(\gamma =b/a\) where a and b are the strain rate and shear rate of the stagnation-point flow, respectively) and the unsteadiness parameter \(\lambda \) on wall shear stress parameters, dimensionless velocities, rate of heat transfer at the wall and dimensionless temperature are analysed. It is found that the large-\(\gamma \) asymptotes do not depend on the parameter \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiemenz, K.: Die Grenzschicht an einem in den fleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinderu. Dingler Polytech J. 326, 321–410 (1911)

    Google Scholar 

  2. Howarth, L.: The boundary layer in three-dimensional flow. Part II: the flow near a stagnation point. Philos. Mag. 42, 1433–1440 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davey, A.: Boundary layer flow at a saddle point of attachment. J. Fluid Mech. 10, 593–610 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, K.T.: Unsteady laminar boundary layers in an incompressible stagnation flow. J. Appl. Mech. 25, 421–427 (1958)

    MATH  Google Scholar 

  5. Williams, J.C.: Nonsteady stagnation point flow. AIAA J. 6, 2417–2419 (1968)

    Article  MATH  Google Scholar 

  6. Cheng, E.H.W., Ozisik, M.N., Williams, J.C.: Nonsteady three-dimensional stagnation point flow. J. Appl. Mech. 38, 282–287 (1971)

    Article  Google Scholar 

  7. Andersson, H.I., Aarseth, J.B., Dandapat, B.S.: Heat transfer in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transf. 43, 69–74 (2000)

    Article  MATH  Google Scholar 

  8. Weidman, P.D.: Non-axisymmetric Homann’s stagnation-point flows. J. Fluid Mech. 702, 460–469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Homann, F.: Der Einfluss grosser Zähigkeit bei Strömung um Zylinder. Z. Angew. Math. Mech. 16, 153–164 (1936)

    Article  MATH  Google Scholar 

  10. Lighthill, M.J.: On displacement thickness. J. Fluid Mech. 4, 383–392 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T.R., Sidui, S. Unsteady heat transfer in non-axisymmetric Homann stagnation-point flows. Z. Angew. Math. Phys. 68, 32 (2017). https://doi.org/10.1007/s00033-017-0775-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0775-y

Mathematics Subject Classification

Keywords

Navigation