Skip to main content
Log in

An effective sub-domain smoothed Galerkin method for free and forced vibration analysis

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Free and forced vibration analysis is significant in structural mechanics and engineering. A sub-domain smoothed Galerkin method is developed for free and forced vibration analyses of 2D solids. This method integrates the advantages of mesh-free Galerkin method and finite element method (FEM). The arbitrarily shaped sub-domains are predefined in the problems domain represented by mesh-free nodes. In each sub-domain, based on mesh-free Galerkin weak formulation, the local discrete equation can be obtained by using moving kriging interpolation, which is similar to the discrete equation of a high-order element in FEM. The strain smoothing technique can be subsequently applied to the nodal integration of sub-domain by dividing the sub-domain into several smoothing cells. Moreover, condensation of degrees of freedom can also be introduced into discrete equations by transfer equations of inner nodes to equations of boundary nodes based on sub-domains. The global dynamic equations of the present method are obtained based on the scheme of FEM by assembling all local discrete equations of sub-domains and are solved by using the standard implicit Newmark’s time integration scheme. Numerical examples proved that the sub-domain smoothed Galerkin method is a robust technique to simulation the elastic dynamic problems, which has high computational efficiency and good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hughes T (1987) The finite element method—linear static and dynamic finite element analysis. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  3. Liu GR, Dai KY, Nguyen-Thoi T (2007) A smoothed finite element method for mechanics problems. Comput Mech 39:859–877

    Article  MATH  Google Scholar 

  4. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71:902–930

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5(2):199–236

    Article  MATH  MathSciNet  Google Scholar 

  6. Krongauz Y, Belytschko T (1997) Consistent pseudo-derivatives in meshless methods. Int J Numer Methods Eng 146:371–386

    MATH  MathSciNet  Google Scholar 

  7. Chen JS, Wu CT (2001) A stabilized conforming nodal integration for Galerkin mesh-free method. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  8. Chen JS, Wu CT (1998) Generalized nonlocal mesh-free method in strain localization. In: Proceeding of international conference on computational engineering science, Atlanta, Georgia, 6-9 October 1998

  9. Chen JS, Wu CT, Belytschko T (2000) Regularization of material instabilities by mesh-free approximations with intrinsic length scales. Int J Numer Methods Eng 47:1303–1322

    Article  MATH  Google Scholar 

  10. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bonet J, Kulasegaram S (1999) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulation. Int J Numer Methods Eng 47:1189–1214

    Article  Google Scholar 

  12. Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43:847–860

    Article  MathSciNet  Google Scholar 

  13. Cui XY, Liu GR, Li GY, Zhao X, Nguyen TT, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput Model Eng Sci 28(2):109–126

    MATH  MathSciNet  Google Scholar 

  14. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197:1184–1203

    Article  ADS  MATH  Google Scholar 

  15. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4):1100–1130

    Article  ADS  Google Scholar 

  16. Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803–820

    Article  ADS  Google Scholar 

  17. Nguyen-Thoi T et al (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324–353

    Article  MATH  MathSciNet  Google Scholar 

  18. Tran TN et al (2010) An edge-based smoothed finite element method for primal–dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917–938

    MATH  Google Scholar 

  19. Liu GR et al (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1):14–26

    Article  Google Scholar 

  20. Liu GR (2010) A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory. Int J Numer Methods Eng 81:1093–1126

    MATH  Google Scholar 

  21. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  ADS  MATH  Google Scholar 

  22. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923–938

    Article  MATH  Google Scholar 

  23. Liu L, Liu GR, Tan VBC (2002) Element free method for static and free vibration analysis of spatial thin shell structures. Comput Methods Appl Mech Eng 191(51):5923–5942

    Article  ADS  MATH  Google Scholar 

  24. Bui TQ, Nguyen TN, Nguyen-Dang H (2009) A moving kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int J Numer Methods Eng 77:1371–1395

    Article  MATH  MathSciNet  Google Scholar 

  25. Bui TQ, Nguyen TN (2011) A moving kriging interpolation-based mesh-free method for free vibration analysis of Kirchhoff plates. Comput Struct 89(3–4):380–394

    Article  Google Scholar 

  26. Bui TQ, Nguyen TN, Zhang CZ (2011) A moving kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput Methods Appl Mech Eng 200:1354–1366

    Article  ADS  MATH  Google Scholar 

  27. Lam KY, Wang QX, Li H (2004) A novel meshless approach—local kriging (LoKriging) method with two-dimensional structural analysis. Comput Mech 33:235–244

    Article  MATH  MathSciNet  Google Scholar 

  28. Li H, Wang QX, Lam KY (2004) Development of a novel meshless local kriging (LoKriging) method for structural dynamic analysis. Comput Methods Appl Mech Eng 193:2599–2619

    Article  ADS  MATH  Google Scholar 

  29. Gu YT, Liu GR (2001) A local point interpolation method for static and dynamic analysis of thin beams. Comput Methods Appl Mech Eng 190:5515–5528

    Article  ADS  MATH  Google Scholar 

  30. Gu YT, Liu GR (2001) A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates. Comput Model Eng Sci 2(4):463–476

    MATH  Google Scholar 

  31. Gu YT, Liu GR (2001) A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27(3):188–198

    Article  MATH  MathSciNet  Google Scholar 

  32. Liu GR, Zhang GY, Gu YT et al (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36(6):421–430

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu GR, Gu YT (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  ADS  Google Scholar 

  34. Zhou JX, Zhang HY, Zhang L (2005) Reproducing kernel particle method for free and forced vibration analysis. J Sound Vib 279(1):389–402

    Article  ADS  Google Scholar 

  35. Wang L (2013) Convex meshfree solutions for arbitrary waveguide analysis in electromagnetic problems. Prog Electromagn Res B 48:131–149

    Article  Google Scholar 

  36. Hu D, Wang Y, Liu GR, Li T, Han X, Gu YT (2014) A sub-domain smoothed Galerkin method for solid mechanics problems. Int J Numer Methods Eng 98:781–798

    Article  MathSciNet  Google Scholar 

  37. Gu L (2003) Moving kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11

    Article  ADS  MATH  Google Scholar 

  38. Sastry CVC, Mahapatra DR, Sopalakrishnan S, Ramamurthy TS (2003) An iterative system equivalent reduction expansion process for extraction of high frequency response from reduced order finite element model. Comput Methods Appl Mech Eng 192(15):1821–1840

    Article  ADS  MATH  Google Scholar 

  39. Song C (2004) A super-element for crack analysis in the time domain. Int J Numer Methods Eng 61(8):1332–1357

    Article  MATH  Google Scholar 

  40. Wu CT, Guo Y, Askari E (2013) Numerical modeling of composite solids using an immersed meshfree Galerkin method. Compos Part B 45:1397–1413

    Article  Google Scholar 

  41. Choi D, Kim H, Cho M (2008) Iterative method for dynamic condensation combined with substructuring scheme. J Sound Vib 317(1–2):199–218

    Article  ADS  Google Scholar 

  42. Belytschko T, Hughes T (1982) Computational methods for transient analysis, vol 1. North-Holland, Amsterdam

    Google Scholar 

  43. Smith IM, Griffiths DV (1998) Programming the finite element method, 3rd edn. Wiley, New York

    Google Scholar 

  44. Callahan JCO, Avitable P, Riemer R (1989) System equivalent reduction expansion process (SEREP). In: Proceedings of the 7th international modal analysis conference, (Las Vegas, Neveda), Union College, Schenectady, NY 1989, pp 29–37

Download references

Acknowledgments

Financial supports from National Natural Science Foundation of China (11102065, 11272118) and ARC Future Fellowship project of Australia (FT100100172) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, D., Yang, G. et al. An effective sub-domain smoothed Galerkin method for free and forced vibration analysis. Meccanica 50, 1285–1301 (2015). https://doi.org/10.1007/s11012-014-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0088-6

Keywords

Navigation