Skip to main content
Log in

Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The effects of shear flow on droplet collapse during the coarsening process in a vapor–liquid system are investigated by a free energy lattice Boltzmann model. To simulate different viscosity ratios, a local relaxation time parameter is integrated with LBM algorithm. The results show that for zero and small shear rates, droplet coarsening happens in its regular pattern where small droplet is collapsed while greater one grows (sub-critical regime). But if the shear rate be greater than a critical value, collapse is abated, droplet coarsening is inverted and smaller droplet grows (super-critical regime). Therefore during coarsening process, collapse mechanism can be controlled by imposing suitable shear flow. Also it is shown that, higher droplet radius ratio, viscosity ratio and surface tension lead to higher critical shear rate of collapse while higher density ratio of liquid and vapor decreases that.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gouin H, Slemrod M (1995) Stability of spherical isothermal liquid-vapor interfaces. Meccanica 30:305–319

    Article  MATH  MathSciNet  Google Scholar 

  2. Amiri Rad E (2014) Coalescence of two at-rest equal-sized drops in static vapor of the same material: a lattice Boltzmann approach. J Mech Sci Technol 28(9):3597–3603

    Article  Google Scholar 

  3. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  ADS  Google Scholar 

  4. Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie 65(7):581–591

    Google Scholar 

  5. Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interface Sci 5(1):1–35

    Article  Google Scholar 

  6. Vladimirova N, Malagoli A, Mauri R (1998) Diffusion-driven phase separation of deeply quenched mixtures. Phys Rev E 58(6):7691–7699

    Article  ADS  Google Scholar 

  7. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327

    Article  ADS  Google Scholar 

  8. Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    Article  ADS  Google Scholar 

  9. Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948

    Article  ADS  Google Scholar 

  10. Hou S, Zou Q, Chen S, Doolen G, Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329–347

    Article  ADS  MATH  Google Scholar 

  11. Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833

    Article  ADS  Google Scholar 

  12. Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052

    Article  ADS  Google Scholar 

  13. He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152(2):642–663

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328

    Article  MATH  Google Scholar 

  15. Lee T, Lin C-L (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206(1):16–47

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Wagner A (2006) Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys Rev E 74(5):056703

    Article  ADS  Google Scholar 

  17. Kikkinides E, Yiotis A, Kainourgiakis M, Stubos A (2008) Thermodynamic consistency of liquid–gas lattice Boltzmann methods: interfacial property issues. Phys Rev E 78(3):036702

    Article  ADS  Google Scholar 

  18. Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Phys Rev E 69:031602

    Article  ADS  Google Scholar 

  19. Kusumaatmaja H, Dupuis A, Yeomans JM (2006) Lattice Boltzmann simulations of drop dynamics. Math Comput Simul 72(2–6):160–164

    Article  MATH  MathSciNet  Google Scholar 

  20. Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629

    Article  Google Scholar 

  21. Mattila KK, Siebert DN, Hegele LA Jr, Philippi PC (2013) High-order lattice-Boltzmann equations and stencils for multiphase models. Int J Mod Phys C 24(12):1340006

    Article  ADS  Google Scholar 

  22. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  23. Holdych DJ, Rovas D, Georgiadis JG, Buckius RO (1998) An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. Int J Mod Phys C 9:1393–1404

    Article  ADS  Google Scholar 

  24. Evans R (1979) The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200

    Article  ADS  Google Scholar 

  25. Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon Press, Berlin

    MATH  Google Scholar 

  26. Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49(6):1457–1467

    Article  MATH  MathSciNet  Google Scholar 

  27. Khatavkar VV, Anderson PD, Meijer HEM (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378

    Article  Google Scholar 

  28. Mahpeykar MR, Teymourtash AR, Amiri Rad E (2013) Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica 48(4):815–827

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Amiri Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri Rad, E. Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation. Meccanica 50, 995–1001 (2015). https://doi.org/10.1007/s11012-014-0079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0079-7

Keywords

Navigation