Skip to main content
Log in

Coalescence of two at-rest equal-sized drops in static vapor of the same material: A lattice Boltzmann approach

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We studied the coalescence of two stationary equal-sized droplets in static vapor using a lattice Boltzmann approach. The non-ideal behavior of one-component, two-phase flow is coupled with BGK lattice Boltzmann by defining a suitable free energy function, which produces the correct equilibrium conditions of the flow. The accuracy of developed model is confirmed by calculating droplet surface tension for different conditions and comparing that with theoretical results. Finally, the coalescence process of two equal-sized drops is modeled and effective parameters on critical gap of coalescence are investigated. The results show that for two at-rest and equal-sized drops in a static flow, the critical gap of coalescence only depends on thickness of the interface, and other parameters such as droplet radius, density ratio and surface tension do not have influences on that directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Stover, C. W. Tobias and M. M. Denn, Bubble coalescence dynamics, AIChE Journal, 43 (1997) 2385–2392.

    Article  Google Scholar 

  2. E. W. Egan and C. W. Tobias, Measurement of interfacial re-equilibration during hydrogen bubble coalescence, J. Electrochem. Soc., 141 (1994) 1118–1126.

    Article  Google Scholar 

  3. O. A. Basaran, Nonlinear oscillations of viscous liquid drops, J. Fluid Mech., 241 (1992) 169–198.

    Article  MATH  Google Scholar 

  4. B. K. Chi and L. G. Leal, A theoretical study of the motion of a viscous drop towards a fluid interface at low Reynolds number, J. Fluid Mech., 201 (1989) 123–146.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. O. Oolman and H. W. Blanch, Bubble coalescence in stagnant Liquids, Chem. Eng. Commun., 43 (1986) 237–261.

    Article  Google Scholar 

  6. S. Srivastava, P. Perlekar, L. Biferale, M. Sbragaglia and F. Toschi, Study of fluid interfaces and moving contact lines using the lattice Boltzmann method, Communications in Computational Physics, 13 (3) (2013) 725–740.

    Google Scholar 

  7. L. Biferale, P. Perlekar, M. Sbragaglia and F. Toschi, Convection in multiphase fluid flows using lattice Boltzmann methods, Physical Review Letters, 108 (10) (2012) 104502.

    Article  Google Scholar 

  8. A. J. Briant, A. J. Wagner and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion, I. Liquid-gas systems. Phys. Rev. E., 69 (2004) 031602.

    Article  Google Scholar 

  9. M. R. Swift, E. Orlandini, W. R. Osborn and J. M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E., 54 (1996) 5041–5052.

    Article  Google Scholar 

  10. X. Shan and H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E., 49 (1994) 2941–2948.

    Article  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Statistical physics, Pergamon Press (1958).

    MATH  Google Scholar 

  12. D. Jamet, O. Lebaigue, N. Coutris and J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput Phys., 169 (2001) 624–651.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non — uniform, classical fluids, Adv. Phys., 28 (1979) 143–200.

    Article  Google Scholar 

  14. S. Succi, The Lattice Boltzmann equation for Fluid dynamics and beyond, Oxford University Press (2001).

    MATH  Google Scholar 

  15. R. Benzi, S. Succi and M. Vergassola, The lattice Boltzmann equation: theory and applications, Physics Reports, 222 (1992) 145–197.

    Article  Google Scholar 

  16. D. J. Holdych, D. Rovas, J. G. Georgiadis and R. O. Buckius, An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models, Int. J. Mod. Phys., C 9 (1998) 1393–1404.

    Article  Google Scholar 

  17. A. Dupuis and J. M. Yeomans, Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions, Langmuir, 21 (2005) 2624–2629.

    Article  Google Scholar 

  18. S. Hou, Q. Zou, S. Chen, G. Doolen and A. C. Cogley, Simulation of cavity flow by the Lattice Boltzmann method, J. Comput. Phys., 118 (1995) 329–347.

    Article  MATH  Google Scholar 

  19. V. V. Khatavkar, P. D. Anderson and H. E. M. Meijer, On scaling of diffuse-interface models, Chemical Engineering Science, 61 (2006) 2364–2378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Amiri Rad.

Additional information

Recommended by Associate Editor Gihun Son

Ehsan Amiri Rad he is an assistant professor of Mechanical engineering at Hakim Sabzevari University. He received the B.Sc. in Mechanical Engineering from Iran University of Science and Technology in 2005 and M.Sc. in Energy Conversion from Ferdowsi University of Mashhad-Iran in 2007. His Ph.D. is from Ferdowsi University of Mashhad-Iran in 2011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, E.A. Coalescence of two at-rest equal-sized drops in static vapor of the same material: A lattice Boltzmann approach. J Mech Sci Technol 28, 3597–3603 (2014). https://doi.org/10.1007/s12206-014-0821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0821-z

Keywords

Navigation