Skip to main content
Log in

Cell models for micropolar flow past a viscous fluid sphere

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The Stokes axisymmetrical flow of an incompressible micropolar fluid past a viscous fluid sphere and the flow of a viscous fluid past a micropolar fluid sphere are investigated. The appropriate boundary conditions are taken on the surface of the sphere, while the proper conditions applied on the fictitious boundary of the fluid envelope vary depending on the kind of cell-model. These problems are solved separately in an analytical fashion, and the velocity profile and the pressure distribution inside and outside of the droplet are shown in several graphs for different values of the parameters. Numerical results for the normalized hydrodynamic drag force acting, in each case, on the spherical droplet-in-cell are obtained for various values of the parameters representing volume fraction, the classical relative viscosity, the micropolarity and spin parameters are presented both in tabular and graphical forms. Results of the drag force are compared with the previous particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  2. Łukaszewicz G (1999) Micropolar fluids: theory and applications. Birkhäuser, Basel

    MATH  Google Scholar 

  3. Eringen AC (2001) Microcontinuum field theories II: Fluent media. Springer, New York

    MATH  Google Scholar 

  4. Seddeek MA (2003) Flow of a magneto-micropolar fluid past a continuously moving plate. Phys Lett A 306:225–257

    Article  ADS  Google Scholar 

  5. Abdullah I, Amin N (2010) A micropolar fluid model of blood flow through a tapered artery with a stenosis. Math Methods Appl Sci 33:1910–1923

    MathSciNet  MATH  Google Scholar 

  6. Hatzikonstantinou PM, Vafeas P (2010) A general theoretical model for the magnetohydrodynamic flow of micropolar magnetic fluids. Application to Stokes flow. Math Methods Appl Sci 33:233–248

    MathSciNet  MATH  Google Scholar 

  7. Ishak A (2010) Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45:367–373

    Article  Google Scholar 

  8. Kumar N, Gupta S (2012) MHD free-convective flow of micropolar and Newtonian fluids through porous medium in a vertical channel. Meccanica 47:277–291

    Article  MathSciNet  Google Scholar 

  9. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Nijhoff, The Hague

    Google Scholar 

  10. Hasimoto H (1959) On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J Fluid Mech 5:317–328

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Saffman PG (1973) On the settling speed of free and fixed suspensions. Stud Appl Math 52:115–127

    MATH  Google Scholar 

  12. Dassios G, Hadjinicolaou M, Coutelieris FA, Payatakes AC (1995) Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int J Eng Sci 33:1465–1490

    Article  MATH  Google Scholar 

  13. Tu HJ, Keh HJ (2001) Some solutions of a cell model for a suspension of spherical vesicles in osmophoresis. Colloids Surf B 20:177–187

    Article  Google Scholar 

  14. Vafeas P, Dassios G (2006) Stokes flow in ellipsoidal geometry. J Math Phys 47:093102

    Article  MathSciNet  ADS  Google Scholar 

  15. Hadamard JS (1911) Mécanique-mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. C R Acad Sci 152:1735–1738

    MATH  Google Scholar 

  16. Rybczynski W (1911) On the translatory motion of a fluid sphere in a viscous medium. Bull Acad Sci Cracow Ser A 40:40–46

    Google Scholar 

  17. Bart E (1968) The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chem Eng Sci 23:193–210

    Article  Google Scholar 

  18. Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field. Rheol Acta 9:488–496

    Article  MATH  Google Scholar 

  19. Brenner H (1971) Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles. Ind Eng Chem Fundam 10:537–543

    Article  Google Scholar 

  20. Coutanceau M, Thizon P (1981) Wall effect on the bubble behaviour in highly viscous liquids. J Fluid Mech 107:339–373

    Article  ADS  Google Scholar 

  21. Keh HJ, Chang YC (2007) Creeping motion of a slip spherical particle in a circular cylindrical pore. Int J Multiph Flow 33:726–741

    Article  Google Scholar 

  22. Keh HJ, Lee TC (2010) Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor Comput Fluid Dyn 24:497–510

    Article  MATH  Google Scholar 

  23. Choudhuri D, Sri Padmavati B (2010) A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity. Z Angew Math Phys 61:317–328

    Article  MathSciNet  MATH  Google Scholar 

  24. Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J 4:197–201

    Article  MathSciNet  Google Scholar 

  25. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    Article  MathSciNet  ADS  Google Scholar 

  26. Kvashnin AG (1979) Cell model of suspension of spherical particles. Fluid Dyn 14:598–602

    Article  ADS  MATH  Google Scholar 

  27. Mehta GD, Morse TF (1975) Flow through charged membranes. J Chem Phys 63:1878–1889

    Article  ADS  Google Scholar 

  28. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond Ser A 83:357–369

    Article  ADS  MATH  Google Scholar 

  29. Ramkissoon H (1985) Flow of a micropolar fluid past a Newtonian fluid sphere. Z Angew Math Mech 65:635–637

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramkissoon H, Majumdar SR (1988) Micropolar flow past a slightly deformed fluid sphere. Z Angew Math Mech 68:155–160

    Article  MathSciNet  MATH  Google Scholar 

  31. Niefer R, Kaloni PN (1985) On the motion of a micropolar fluid drop in a viscous fluid. J Eng Math 14:107–116

    Article  Google Scholar 

  32. Hayakawa H (2000) Slow viscous flows in micropolar fluids. Phys Rev E 61:5477–5492

    Article  ADS  Google Scholar 

  33. Hoffmann K-H, Marx D, Botkin ND (2007) Drag on spheres in micropolar fluids with nonzero boundary conditions for microrotations. J Fluid Mech 590:319–330

    Article  ADS  MATH  Google Scholar 

  34. Saad EI (2008) Motion of a spheroidal particle in a micropolar fluid contained in spherical envelope. Can J Phys 86:1039–1056

    Article  ADS  Google Scholar 

  35. Ramkissoon H, Majumdar SR (1976) Drag on axially symmetric body in the Stokes’ flow of micropolar fluids. Phys Fluids 19:16–21

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, E.I. Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47, 2055–2068 (2012). https://doi.org/10.1007/s11012-012-9575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9575-9

Keywords

Navigation