Skip to main content
Log in

Stokes flow of micropolar fluid past a viscous fluid spheroid with non-zero boundary condition for microrotation

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The Stokes axisymmetric flow of an incompressible micropolar fluid past a viscous fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and spin–vorticity relation at the surface of the spheroid. The hydrodynamic drag force acting on the spheroid is calculated. An exact solution of the problem is obtained to the first order in the small parameter characterizing the deformation. It is observed that due to increased spin parameter value, the drag coefficient decreases. Well-known results are deduced and comparisons are made with classical viscous fluid and micropolar fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hadamard J S 1911 Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. Compt. Rend. Acad. Sci. (Paris) 152: 1735–1738

    MATH  Google Scholar 

  2. Rybczynski W 1911 On the translatory motion of a fluid sphere in a viscous medium. Bull. Acad. Sci. Cracow Ser. A 40: 40–46

    Google Scholar 

  3. Eringen A C 1966 Theory of micropolar fluids. J. Math. Mech. 16: 1–18

    MathSciNet  Google Scholar 

  4. Eringen A C 2001 Microcontinuum field theories II: Fluent media. New York: Springer

    MATH  Google Scholar 

  5. Ariman T, Turk M A and Sylvester N D 1973 Microcontinuum fluid mechanics—A review. Int. J. Eng. Sci. 11: 905–930

    Article  MATH  Google Scholar 

  6. Ariman T, Turk M A and Sylvester N D 1974 Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci. 12: 273–293

    Article  MATH  Google Scholar 

  7. Lukaszewicz G 1999 Micropolar fluids: theory and applications. Basel: Birkhäuser

    Book  MATH  Google Scholar 

  8. Hetsroni G and Haber S 1970 The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field. Rheol. Acta 9: 488–496

    Article  MATH  Google Scholar 

  9. Bart E 1968 The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chem. Eng. Sci. 23: 193–210

    Article  Google Scholar 

  10. Wacholder E and Weihs D 1972 Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary. Chem. Eng. Sci. 27: 1817–1828

    Article  Google Scholar 

  11. Lee T C and Keh H J 2012 Creeping motion of a fluid drop inside a spherical cavity. Eur. J. Mech. B: Fluids 34: 97–104

    Article  MathSciNet  MATH  Google Scholar 

  12. Choudhuri D and Sri Padmavati B 2014 A study of an arbitrary unsteady Stokes flow in and around a liquid sphere. Appl. Math. Comp. 243: 644–656

    Article  MathSciNet  MATH  Google Scholar 

  13. Tripathi M K, Sahu K C and Govindarajan R 2014 Why a falling drop does not in general behave like a rising bubble. Sci. Rep. 4: 4771

    Google Scholar 

  14. Tripathi M K, Sahu K C and Govindarajan R 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6: 6268

    Article  Google Scholar 

  15. Rao S K L and Rao P B 1970 The slow stationary flow of a micropolar liquid past a sphere. J. Eng. Math. 4: 209–217

    Article  MATH  Google Scholar 

  16. Rao S K L and Iyengar T K V 1981 The slow stationary flow of incompressible micropolar fluid past a spheroid. Int. J. Eng. Sci. 19: 189–220

    Article  MATH  Google Scholar 

  17. Iyengar T K V and Srinivasacharya D 1993 Stokes flow of an incompressible micropolar fluid past an approximate sphere. Int. J. Eng. Sci. 31: 115–123

    Article  MATH  Google Scholar 

  18. Ramkissoon H and Majumdar S R 1976 Drag on an axially symmetric body in the Stokes flow of micropolar fluid. Phys. Fluids 19: 16–21

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramkissoon H 1985 Flow of a micropolar fluid past a Newtonian fluid sphere. Z. Angew. Math. Mech. 65: 635–637

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramkissoon H and Majumdar S R 1988 Micropolar flow past a slightly deformed fluid sphere. Z. Angew. Math. Mech. 68: 155–160

    Article  MathSciNet  MATH  Google Scholar 

  21. Hayakawa H 2000 Slow viscous flows in micropolar fluids. Phys. Rev. E 61(5): 5477–5492

    Article  Google Scholar 

  22. Hoffmann K H, Marx D and Botkin N D 2007 Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations. J. Fluid Mech. 590: 319–330

    Article  MATH  Google Scholar 

  23. Niefer R and Kaloni P N 1980 On the motion of a micropolar fluid drop in a viscous fluid. J. Eng. Math. 14: 107–116

    Article  MATH  Google Scholar 

  24. Saad E I 2012 Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47: 2055–2068

    Article  MathSciNet  MATH  Google Scholar 

  25. Satya D and Pankaj S 2012 Creeping flow of micropolar fluid past a fluid sphere with non-zero spin boundary condition. Int. J. Eng. Technol. 1(2): 67–76

    Google Scholar 

  26. Jaiswal B R and Gupta B R 2014 Drag on Reiner-Rivlin liquid sphere placed in a micropolar fluid with non-zero boundary condition for microrotations. Int. J. Appl. Math. Mech. 10(7): 90–103

    Google Scholar 

  27. Faltas M S and Saad E I 2014 Slow motion of spherical droplet in a micropolar fluid flow perpendicular to a planar solid surface. Eur. J. Mech. B: Fluids 48: 266–276

    Article  MathSciNet  Google Scholar 

  28. Happel J and Brenner H 1965 Low Reynolds number hydrodynamics. Englewood Cliffs, NJ: Prentice-Hall

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krishna Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M.K., Kaur, M. Stokes flow of micropolar fluid past a viscous fluid spheroid with non-zero boundary condition for microrotation. Sādhanā 41, 1463–1472 (2016). https://doi.org/10.1007/s12046-016-0565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0565-9

Keywords

Navigation