Skip to main content
Log in

Acute and chronic treatment with quetiapine induces antidepressant-like behavior and exerts antioxidant effects in the rat brain

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Many studies note that changes in oxidative balance are involved in the pathogenesis of major depressive disorder (MDD) and in the success of some antidepressants. Quetiapine exerts a therapeutic response and induces changes in physiological mechanisms that appear to underlie MDD. The objective of this study was to evaluate the antidepressant and antioxidant effects of quetiapine (20 mg /kg) in adult animals. Sixty minutes after an acute treatment or the last administration of chronic treatment (14 days) with quetiapine, animals were subjected to the forced swimming test (FST) to evaluate mobility parameters. Then, the hippocampus, prefrontal cortex (CPF), amygdala and nucleus accumbens (NAc) were removed for the assessment of oxidative stress parameters. Both acute and chronic treatments exerted antidepressant-like effects. Myeloperoxidase (MPO) activity was reduced in the amygdala after acute treatment and in the hippocampus, PFC and amygdala after chronic treatment. In addition, after chronic treatment, the levels of thiobarbituric reactive species (TBARS) were reduced in the amygdala and NAc, and the protein carbonyl content was reduced in the CPF. Superoxide dismutase (SOD) activity increased in the NAc after acute and chronic treatments. Catalase (CAT) activity increased in the PFC after acute treatment and in the NAc after acute and chronic treatments. The concentration of nitrite/nitrate was lower in the CPF after chronic treatment. These results corroborate the antidepressant effect of quetiapine and indicate that quetiapine exhibits an antioxidant profile, a physiological mechanism that appears be involved in the therapeutic function of quetiapine in individuals resistant to classical antidepressant treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180(3):305–313

    Article  Google Scholar 

  • Abelaira HM, Réus GZ, Quevedo J (2013) Animal models as tools to study the pathophysiology of depression. Rev Bras Psiquiatr 35(Suppl 2):S112–S120

    Article  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  • Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K (2006) Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the cardiovascular Health study. Arch Gen Psychiatry 63:273–279

    Article  PubMed  Google Scholar 

  • Baune BT (2008) New developments in the management of major depressive disorder and generalized anxiety disorder: role of quetiapine. Neuropsychiatr Dis Treat 4(6):1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S (2008) The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuro-Psychopharmacol Biol Psychiatry 32(1):42–48

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J5:9–19

    Article  Google Scholar 

  • Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF (2013) Factors influencing behavior in the forced swim test. Physiol Behav 118:227–239

    Article  CAS  PubMed  Google Scholar 

  • Byun J, Henderson JP, Mueller DM, Heinecke JW (1999) 8-nitro-2′-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry 38(8):2590–2600

    Article  CAS  PubMed  Google Scholar 

  • Çakır ÖK, Ellek N, Salehin N, Hamamcı R, Keleş H, Kayalı DG, Akakın D, Yüksel M (2016) Özbeyli D (2016) protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav. doi:10.1016/j.physbeh.2016.10.010

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Zhou Z, Shu Y, Zhai C, Zhu Y, Gong S, Cui Y, Wang JF (2015) Chronic unpredictable stress impairs endogenous antioxidant defense in rat brain. Neurosci Lett 584:208–213

    Article  CAS  PubMed  Google Scholar 

  • Cheer SM, Wagstaff AJ (2004) Quetiapine – a review of its use in the management of schizophrenia. C.N.S. Drugs 18(3):173–199

    CAS  Google Scholar 

  • Chernoloz O, El Mansari M, Blier P (2012) Effects of sustained administration of quetiapine alone and in combination with a serotonin reuptake inhibitor on norepinephrine and serotonin transmission. Neuropsychopharmacology 37(7):1717–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross AJ, Widzowski D, Maciag C, Zacco A, Hudzik T, Liu J, Nyberg S, Wood MW (2016) Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br J Pharmacol 173(1):155–166

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4(9):775–790

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20(1):1–7

    Article  PubMed  Google Scholar 

  • Czerska M, Mikołajewska K, Zieliński M, Gromadzińska J, Wąsowicz W (2015) Today's oxidative stress markers. Med Pr 66(3):393–405

    Article  PubMed  Google Scholar 

  • De Carlo V, Calati R, Serretti A (2016) Socio-demographic and clinical predictors of non-response/non-remission in treatment resistant depressed patients: a systematic review. Psychiatry Res 240:421–430

    Article  PubMed  Google Scholar 

  • De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    Article  CAS  PubMed  Google Scholar 

  • Demyttenaere K, Bonnewyn A, Bruffaerts R, Brugha T, De Graaf R, Alonso J (2006) Comorbid painful physical symptoms and depression: prevalence, work loss, and help seeking. J Affect Disord 92:185–193

    Article  PubMed  Google Scholar 

  • Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Dhir A, Kulkarni SK (2007) Involvement of L-arginine-nitric oxidecyclic guanosine monophosphate pathway in the antidepressantlike effect of venlafaxine in mice. Prog Neuropsychopharmacol. Biol Psychiatry 31:921–925

    CAS  Google Scholar 

  • Dietrich-Muszalska A, Kontek B, Rabe-Jabłońska J (2011) Quetiapine, olanzapine and haloperidol affect human plasma lipid peroxidation in vitro. Neuropsychobiology 63(4):197–120

    Article  CAS  PubMed  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100(23):13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekeanyanwu RC, Njoku OU (2015) Flavonoid-rich fraction of the Monodora Tenuifolia seed extract attenuates behavioural alterations and oxidative damage in forced-swim stressed rats. Chin J Nat Med 13(3):183–191

    PubMed  Google Scholar 

  • Elmelegy AAM, Kamal SM (2013) Modulation of glutamate and GABA contents by quetiapine in nucleus Accumbens of chronic mild stressed albino rats. J Pharmacol Res 3(1):59–63

    Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Möller HJ, WFSBP Task Force on Treatment Guidelines for Schizophrenia (2005) World Federation of Societies of biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 1: acute treatment of schizophrenia. World J Biol Psychiatry 6:132–191

    Article  PubMed  Google Scholar 

  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2014) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262

    Google Scholar 

  • Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33(2):79–97

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress and degenerative neurological disorders. Proc Soc Exp Biol Med 222(3):236–245

    Article  CAS  PubMed  Google Scholar 

  • Gałecki P, Florkowski A, Bobińska K, Śmigielski J, Bieńkiewicz M, Szemraj J (2010) Functional polymorphism of the myeloperoxidase gene (G-463A) in depressive patients. Acta Neuropsychiatr 22(5):218–222

    Article  PubMed  Google Scholar 

  • Gałecki P, Maes M, Florkowski A, Lewiński A, Gałecka E, Bieńkiewicz M, Szemraj J (2011) Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. J Affect Disord 129(1–3):175–182

    PubMed  Google Scholar 

  • Garabadu D, Ahmad A, Krishnamurthy S (2015) Risperidone attenuates modified stress-re-stress paradigm-induced mitochondrial dysfunction and apoptosis in rats exhibiting post-traumatic stress disorder-like symptoms. J Mol Neurosci 56(2):299–312

    Article  CAS  PubMed  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32(1):140–144

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JH, Tian HZ, Lian YY, Yu Y, Lu CB, Li XM, Zhang RL, Xu H (2015) Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat. Neuropsychiatr Dis Treat 11:1473–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasler G (2010) Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry 9(3):155–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, Rebusi N, Heshmati M, Aleyasin H, Warren BL, Lebonté B, Horn S, Lapidus KA, Stelzhammer V, Wong EH, Bahn S, Krishnan V, Bolaños-Guzman CA, Murrough JW, Merad M, Russo SJ (2014) Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci U S A 111(45):16136–16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignácio ZM, Réus GZ, Abelaira HM, Titus SE, Carlessi AS, da Luz JR, Matias BI, Bruchchen L, Carvalho-Silva M, Gomes LM, Rebelo J, Streck EL, Quevedo J (2015) Acute and chronic treatments with quetiapine increase mitochondrial respiratory chain complex activity in the rat brain. Curr Neurovasc Res 12(3):283–292

    Article  PubMed  Google Scholar 

  • Jensen NH, Rodriguiz RM, Caron MG, Wetsel WC, Rothman RB, Roth BL (2008) N-desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine's antidepressant activity. Neuropsychopharmacology 33(10):2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32(4):370–379

    PubMed  Google Scholar 

  • Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, Rüther E, Emrich HM, Schneider U, Bleich S (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatr Clin Neurosci 17(2):227–231

    Article  CAS  Google Scholar 

  • Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31(6):761–777

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU (2013) Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 46:224–235

    Article  CAS  Google Scholar 

  • Lefkowitz DL, Lefkowitz SS (2008) Microglia and myeloperoxidase: a deadly partnership in neurodegenerative disease. Free Radic Biol Med 45(5):726–731

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y (2015) Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 59(6):1130–1142

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Xu H, Li XM (2005) Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 1063(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24(1):27–53

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692

    Article  CAS  Google Scholar 

  • Martins MR, Petronilho FC, Gomes KM, Dal-Pizzol F, Streck EL, Quevedo J (2008) Antipsychotic-induced oxidative stress in rat brain. Neurotox Res 13(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84(3):436–452

    Article  CAS  PubMed  Google Scholar 

  • McIntyre RS, Soczynska JK, Woldeyohannes HO, Alsuwaidan M, Konarski JZ (2007) A preclinical and clinical rationale for quetiapine in mood syndromes. Expert Opin Pharmacother 8(9):1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Mokoena ML, Harvey BH, Viljoen F, Ellis SM, Brink CB (2015) Ozone exposure of flinders sensitive line rats is a rodent translational model of neurobiological oxidative stress with relevance for depression and antidepressant response. Psychopharmacology 232(16):2921–2938

    Article  CAS  PubMed  Google Scholar 

  • Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18(5):595–606

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Papakostas GI (2009) Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am J Psychiatry 166(9):980–991

    Article  PubMed  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52(6):503–528

    Article  PubMed  Google Scholar 

  • Ortmann CF, Réus GZ, Ignácio ZM, Abelaira HM, Titus SE, de Carvalho P, Arent CO, Dos Santos MA, Matias BI, Martins MM, de Campos AM, Petronilho F, Teixeira LJ, Morais MO, Streck EL, Quevedo J, Reginatto FH (2016) Enriched flavonoid fraction from Cecropia pachystachyaTrécul leaves exerts antidepressant-like behavior and protects brain against oxidative stress in rats subjected to chronic mild stress. Neurotox Res 29(4):469–483

    Article  CAS  PubMed  Google Scholar 

  • Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479(3):317–320

    Article  CAS  PubMed  Google Scholar 

  • Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37(1):43–51

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain: stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977a) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977b) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  • Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawdin BJ, Mellon SH, Dhabhar FS, Epel ES, Puterman E, Su Y, Burke HM, Reus VI, Rosser R, Hamilton SP, Nelson JC, Wolkowitz OM (2013) Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun 31:143–152

    Article  CAS  PubMed  Google Scholar 

  • Réus GZ, Stringari RB, Ribeiro KF, Ferraro AK, Vitto MF, Cesconetto P, Souza CT, Quevedo J (2011) Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res 221(1):166–171

    Article  PubMed  Google Scholar 

  • Réus GZ, Carlessi AS, Titus SE, Abelaira HM, Ignácio ZM, da Luz JR, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Quevedo J (2015) A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 75(11):1268–1281

    Article  PubMed  Google Scholar 

  • Sacchetti E, Valsecchi P (2003) Quetiapine, clozapine, and olanzapine in the treatment of tardive dyskinesia induced by first-generation antipsychotics: a 124-week case report. Int Clin Psychopharmacol 18:357–359

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  PubMed  Google Scholar 

  • Shahzad N, Ahmad J, Khan W, Al-Ghamdi SS, Ain MR, Ibrahim IA, Akhtar M, Khanam R (2014) Interactions of atenolol with alprazolam/escitalopram on anxiety, depression and oxidative stress. Pharmacol Biochem Behav 117:79–84

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci. (2011): p. 572634

  • Soeiro-De-Souza MG, Dias VV, Missio G, Balanzá-Martinez V, Valiengo L, Carvalho AF, Moreno RA (2015) Role of quetiapine beyond its clinical efficacy in bipolar disorder: from neuroprotection to the treatment of psychiatric disorders (review). Exp Ther Med 9(3):643–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spickett CM, Jerlich A, Panasenko OM, Arnhold J, Pitt AR, Stelmaszyńska T, Schaur RJ (2000) The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim Pol 47(4):889–899

    CAS  PubMed  Google Scholar 

  • Stefanescu C, Ciobica A (2012) The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disord 143:34–38

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J (2014) Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. Rev Bras Psiquiatr 36(2):156–167

    Article  PubMed  Google Scholar 

  • Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12(3):323–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarowska M, Szemraj J, Berk M, Maes M, Gałecki P (2015) Oxidant/antioxidant imbalance is an inherent feature of depression. BMC Psychiatry 15:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomaz VS, Cordeiro RC, Costa AM, de Lucena DF, Nobre Júnior HV, de Sousa FC, Vasconcelos SM, Vale ML, Quevedo J, Macêdo D (2014) Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience 268:236–246

    Article  CAS  PubMed  Google Scholar 

  • Tundo A, de Filippis R, Proietti L (2015) Pharmacologic approaches to treatment resistant depression: evidences and personal experience. World J Psychiatry 5(3):330–341

    PubMed  PubMed Central  Google Scholar 

  • Vaccarino V, Brennan ML, Miller AH, Bremner JD, Ritchie JC, Lindau F, Veledar E, Su S, Murrah NV, Jones L, Jawed F, Dai J, Goldberg J, Hazen SL (2008) Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study. BiolPsychiatry 64(6):476–483

    CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Valvassori SS, Resende WR, Budni J, Dal-Pont GC, Bavaresco DV, Réus GZ, Carvalho AF, Gonçalves CL, Furlanetto CB, Streck EL, Quevedo J (2015) Sodium butyrate, a histone deacetylase inhibitor, reverses behavioral and mitochondrial alterations in animal models of depression induced by early- or late-life stress. Curr Neurovasc Res 12(4):312–320

    Article  CAS  PubMed  Google Scholar 

  • Vesely C, Kufferle B, Brucke T, Kacper S (2000) Remission of severe tardive dyskinesia in a schizophrenic patient treated with the atypical antipsychotic substance quetiapine. Int Clin Psychopharmacol 15:57–60

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chang T, Chen YC, Zhang RG, Wang HN, Wu WJ, Peng ZW, Tan QR (2013) Quetiapine add-on therapy improves the depressive behaviors and hippocampal neurogenesis in fluoxetine treatment resistant depressive rats. Behav Brain Res 253:206–211

    Article  CAS  PubMed  Google Scholar 

  • Weissman MM, Wickramaratne P, Nomura Y, Tarner V, Pilowsky D, Verdeli H (2006) Offspring of depressed parents: 20 years later. Am J Psychiatry 163:1001–1008

    Article  PubMed  Google Scholar 

  • Winter HR, Earley WR, Hamer-Maansson JE, Davis PC, Smith MA (2008) Steady-state pharmacokinetic, safety, and tolerability profiles of quetiapine, norquetiapine, and other quetiapine metabolites in pediatric and adult patients with psychotic disorders. J Child Adolesc Psychopharmacol 18(1):81–98

    Article  PubMed  Google Scholar 

  • Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H (2015) The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: effects of quetiapine. Neurochem Int 90:185–192

    Article  CAS  PubMed  Google Scholar 

  • Yan LJ, Lodge JK, Traber MG, Matsugo S, Packer L (1997) Comparison between copper-mediated and hypochlorite-mediated modifications of human low density lipoproteins evaluated by protein carbonyl formation. J Lipid Res 38(5):992–1001

    CAS  PubMed  Google Scholar 

  • Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337

    Article  CAS  PubMed  Google Scholar 

  • Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):220–228

    Article  CAS  Google Scholar 

  • Zhang GF, Wang N, Shi JY, Xu SX, Li XM, Ji MH, Zuo ZY, Zhou ZQ, Yang JJ (2013) Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test. Pharmacol Biochem Behav 110:8–12

    Article  CAS  PubMed  Google Scholar 

  • Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103(5):1843–1854

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Keitner GI, Qin B, Ravindran AV, Bauer M, Del Giovane C, Zhao J, Liu Y, Fang Y, Zhang Y, Xie P (2015) Atypical antipsychotic augmentation for treatment-resistant depression: a systematic review and network meta-analysis.Int J Neuropsychopharmacol 18(11):pyv060

Download references

Acknowledgements

The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). Laboratory of Neurosciences (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by grants from CNPq (JQ) FAPESC (JQ); Instituto Cérebro e Mente (JQ) and UNESC (JQ and GZR). JQ is 1A CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislaine Z. Réus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignácio, Z.M., Réus, G.Z., Abelaira, H.M. et al. Acute and chronic treatment with quetiapine induces antidepressant-like behavior and exerts antioxidant effects in the rat brain. Metab Brain Dis 32, 1195–1208 (2017). https://doi.org/10.1007/s11011-017-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0028-y

Keywords

Navigation