Skip to main content
Log in

Inhibition of AGEs formation, antioxidative, and cytoprotective activity of Sumac (Rhus typhina L.) tannin under hyperglycemia: molecular and cellular study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It is well known that accumulation of advanced glycation ends products (AGEs) lead to various diseases such as diabetes and diabetic complications. In this study we showed that hydrolysable tannin from Sumac (Rhus typhina L.)—3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (C55H40O34) inhibited generation of glycation markers in bovine serum albumin such as AGEs, dityrosine, N′-formylkynurenine and kynurenine under high glucose treatment. This effect was accompanied by stabilization of the protein structure, as was shown using ATR-FT-IR spectroscopy and fluorescence methods. C55H40O34 exhibited also a neuroprotective effect in high glucose-exposed Neuro2A cells suppressing ROS formation and expression of phospho NF-κβ and iNOS. At the same time C55H40O34 increased expression of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase and mitochondrial complex I and V activities. Results from this study demonstrates a potent antiglycation activity of C55H40O34 in vitro and indicates its possible therapeutic application in glycation related diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

AGEs:

Advanced glycation end products

ATR-FT-IR:

Attenuated total reflection Fourier-transform infra-red spectroscopy

BSA:

Bovine serum albumin

DCF:

2′,7′-Dichlorofluorescein

d-Tyr:

Dityrosine

FBS:

Fetal bovine serum

H2DCF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

HO-1:

Heme oxygenase-1

HSA:

Human serum albumin

iNOS:

Nitric oxide synthase

K b :

Binding constant

KN:

Kynurenine

MEM:

Minimum essential medium

N-FKN:

N′-Formylkynurenine

NF-κB:

Nuclear factor kappa B

NQO1:

NAD(P)H:quinone oxidoreductase

PBS:

Phosphate buffer saline

PGG:

1,2,3,4,6-Penta-O-galloyl-β-d-glucose

RCS:

Reactive carbonyl species

RIPA buffer:

Radioimmunoprecipitation assay buffer

ROS:

Reactive oxygen species

References

  1. Awasthi S, Saraswathi NT (2016) Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Adv 6:90739–90753

    Article  CAS  Google Scholar 

  2. Ma H, Liu W, Frost L et al (2015) The hydrolyzable gallotannin, penta-O-galloyl-β-d-glucopyranoside, inhibits the formation of advanced glycation endproducts by protecting protein structure. Mol BioSyst 11:1338–1347

    Article  CAS  PubMed  Google Scholar 

  3. Taghavi F, Rabbibi-Rezaei M, Amani M et al (2017) The status of glycation in protein aggregation. Int J Biol Macromol 100:67–74

    Article  CAS  PubMed  Google Scholar 

  4. Thornalley PJ (1999) Clinical significance of glycation. Clin Lab 45:263–273

    CAS  Google Scholar 

  5. Semchyshyn HM (2014) Reactive carbonyl species in vivo: generation and dual biological effects. Sci World J 21:417842. https://doi.org/10.1155/2014/417842

    Article  CAS  Google Scholar 

  6. Liu W, Ma H, Frost L et al (2014) Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct 5:2996–3004

    Article  CAS  PubMed  Google Scholar 

  7. Minetti M, Agati L, Malorni W (2007) The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases. Cardiovasc Res 75:21–28

    Article  CAS  PubMed  Google Scholar 

  8. Roche M, Rondeau P, Singh NR et al (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  9. Arasteh A, Farahi S, Habibi-Rezaei M et al (2014) Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord 13:49. https://doi.org/10.1186/2251-6581-13-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadowska-Bartosz I, Bartosz G (2015) Prevention of protein glycation by natural compounds. Molecules 20:3309–3334

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yeh WJ, Hsia SM, Lee WH et al (2017) Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal 25:84–92

    Article  CAS  PubMed  Google Scholar 

  12. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH (2013) Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med 6:561–569

    Article  CAS  PubMed  Google Scholar 

  13. Afshari M, Rahimmalek M, Miroliaei M (2018) Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chem Biodivers 15:e1800075

    Article  PubMed  Google Scholar 

  14. Qu J, Teng J, El-Nezami HS, Wang M (2018) Impact of resveratrol, epicatechin and rosmarinic acidon fluorescent AGEs and cytotoxicity of cookies. J Funct Food 40:44–50

    Article  Google Scholar 

  15. Mavlyanov SM, Islambekov SY, Ismailov AI et al (2001) Vegetable tannin agents. Chem Nat Compd 37:1–24

    Article  CAS  Google Scholar 

  16. Yoskida T, Amakura Y, Yoshimura M (2010) Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int J Mol Sci 11:79–106

    Article  Google Scholar 

  17. Okuda T, Ito H (2011) Tannins of constant structure in medicinal and food plants—hydrolyzable tannins and polyphenols related to tannins. Molecules 16:2191–2217

    Article  CAS  PubMed Central  Google Scholar 

  18. Rakhimov RN, Qodirova ShO, Abdulldjanova NG et al (2020) Elucidation of structures of new ellagitannins from plants of Euphorbiaceous. J Crit Rev 7:431–437

    Google Scholar 

  19. Engstrom MT, Arvola J, Nenonen S et al (2019) Structural features of hydrolyzable tannins determine their ability to form insoluble complexes with bovine serum albumin. J Agric Food Chem 67(24):6798–6808

    Article  CAS  PubMed  Google Scholar 

  20. Sekowski S, Ionov M, Kaszuba M et al (2014) Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin. Colloids Surf B 123:623–628

    Article  CAS  Google Scholar 

  21. Sekowski S, Olchowik-Grabarek E, Wieckowska W et al (2020) Spectroscopic, Zeta-potential and surface plasmon resonance analysis of interaction between potential anti-HIV tannins with different flexibility and human serum albumin. Colloids Surf B 194:111175

    Article  CAS  Google Scholar 

  22. Sekowski S, Buczkowski A, Palecz B et al (2020) Inhibitory effect of Euphorbia tannins on α-synuclein aggregation in aqueous solutions. J Mol Liq 299:112112

    Article  CAS  Google Scholar 

  23. Shimamura Y, Aoki N, Sugiyama Y et al (2016) Plant-derived polyphenols interact with staphylococcal enterotoxin A and inhibit toxin activity. PLoS ONE 11:e0157082. https://doi.org/10.1371/journal.pone.0157082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soares S, Mateus N, Freitas V (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem 55:6726–6735

    Article  CAS  PubMed  Google Scholar 

  25. Furlan AL, Castets A, Nallet F et al (2014) Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting? Langmuir 30:5518–5526

    Article  CAS  PubMed  Google Scholar 

  26. Sekowski S, Ionov M, Dubis A et al (2016) Biomolecular interactions of tannin isolated from Oenothera gigas with liposomes. J Membr Biol 249:171–179

    Article  CAS  PubMed  Google Scholar 

  27. He Q, Shi B, Yao K (2006) Interaction of gallotanins with proteins, amino acids, phospholipids and sugars. Food Chem 95:250–254

    Article  CAS  Google Scholar 

  28. Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567

    Article  CAS  PubMed  Google Scholar 

  29. Serrano J, Puupponen-Pimia R, Dauer A et al (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:310–329

    Article  Google Scholar 

  30. Torres-Leon C, Ventura-Sobrevilla J, Serna-Cock L (2017) Pentagalloylglucose (PGG): a valuable phenolic compound with functional properties. J Funct Food 37:176–189

    Article  CAS  Google Scholar 

  31. Kiss AK, Piwowarski JP (2016) Ellegitannins, gallotanins and their metabolites-the contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem 23:1. https://doi.org/10.2174/0929867323666160919111559

    Article  CAS  Google Scholar 

  32. Cai Y, Zhang J, Chen NG et al (2017) Recent advances in anticancer activities and drug delivery systems of tannins. Med Res Rev 37:665–701

    Article  CAS  PubMed  Google Scholar 

  33. Olchowik E, Lotkowski K, Mavlyanov S et al (2012) Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell Mol Biol Lett 17:333–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N et al (2017) Specificity of hydrolysable tannins from Rhus typhina L. to oxidants in cell and cell-free models. Appl Biochem Biotechnol 181:495–510

    Article  CAS  PubMed  Google Scholar 

  35. Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z et al (2014) Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects. J Membr Biol 247:533–540

    Article  CAS  PubMed  Google Scholar 

  36. Olchowik-Grabarek E, Sekowski S, Bitiucki M et al (2020) Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci Rep 10:11168. https://doi.org/10.1038/s41598-020-68030-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sekowski S, Ionov M, Abdulladjanova N et al (2017) Interaction of α-synuclein with Rhus typhina tannin—implication for Parkinson’s disease. Colloids Surf B 155:159–165

    Article  CAS  Google Scholar 

  38. Sadowska-Bartosz I, Galiniak S, Bartosz G (2014) Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules 19:18828–18849

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aghdam SY, Gurel Z, Ghaffarieh A et al (2013) High glucose and diabetes modulate cellular proteasome function: implications in the pathogenesis of diabetes complications. Biochem Biophys Res Commun 432:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato T, Roy S (2002) Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Invest Ophthalmol Vis Sci 43:170–175

    PubMed  Google Scholar 

  41. Bass DA, Parce JW, Dechatelet LR et al (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    Article  CAS  PubMed  Google Scholar 

  42. Pacciolla R, Marcello L, Colabufo NA et al (2020) Glycated albumin, an early biomarker of several pathologies. Biomed J Sci Tech Res 26:19858–19860

    Google Scholar 

  43. Khalifa I, Peng J, Jia Y et al (2019) Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. Int J Niol Macromol 15:10–19

    Article  Google Scholar 

  44. Zhang FL, Gao HQ, Shen L (2007) Inhibitory effect of GSPE on RAGE expression induced by advanced glycation end products in endothelial cells. J Cardiovasc Pharmacol 50:434–440

    Article  CAS  PubMed  Google Scholar 

  45. Palanisamy UD, Ling LT, Manaharan T et al (2011) Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem 127:21–27

    Article  CAS  Google Scholar 

  46. Lan MY, Li HM, Tao G et al (2020) Effects of four bamboo derived flavonoids on advanced glycation end products formation in vitro. J Funct Food 71:103976

    Article  CAS  Google Scholar 

  47. Hofmann T, Glabasnia A, Schwarz B et al (2006) Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6,-penta-O-galloyl-β-d-glucopyranose, castalagin and grandinin. J Agric Food Chem 54:9503–9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deaville ER, Green RJ, Mueller-Harvey I et al (2007) Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Food Chem 55:4554–4561

    Article  CAS  PubMed  Google Scholar 

  49. Sekowski S, Bitiucki M, Ionov M et al (2018) Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. J Lumin 194:170–178

    Article  CAS  Google Scholar 

  50. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12:4171–4179

    Article  CAS  PubMed  Google Scholar 

  51. Dufour C, Dangles O (2005) Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta 1721:164–173

    Article  CAS  PubMed  Google Scholar 

  52. Suryawanshi VD, Walekar LS, Gore AH et al (2016) Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J Pharm Anal 6:56–63

    Article  PubMed  Google Scholar 

  53. Rondeau P, Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93:645–658

    Article  CAS  PubMed  Google Scholar 

  54. Das A, Basak P, Pramanik A et al (2020) Ribosylation induced structural changes in bovine serum albumin: understanding high dietary sugar induced protein aggregation and amyloid formation. Heliyon 6:e05053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mendez DL, Jensen RA, McElroy LA et al (2005) The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch Biochem Biophys 15:92–99

    Article  Google Scholar 

  56. Stefek M, Drozdikova I, Vajdona K (1996) The pyridoindole antioxidant stobadine inhibited glycation-induced absorbance and fluorescence changes in albumin. Acta Diabetol 33:35–40

    Article  CAS  PubMed  Google Scholar 

  57. Rondeauet P, Navarra G, Cacciabaudo F et al (2010) Thermal aggregation of glycated bovine serum albumin. Biochim Biophys Acta 1804:789–798

    Article  Google Scholar 

  58. Szkudlarek A, Maciążek-Jurczyk M, Chudzik M et al (2018) Alteration of human albumin tertiary structure induced by glycation. Spectroscopic study. Spectrochim Acta A 153:560–565

    Article  Google Scholar 

  59. GhoshMoulick R, Bhattacharya J, Roy S et al (2007) Compensatory secondary structure alterations in protein glycation. Biochim Biophys Acta 1774:233–242

    Article  CAS  PubMed  Google Scholar 

  60. Huang YT, Liao HF, Wang SL et al (2016) Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique. AIMS Biophys 3:247–260

    Article  CAS  Google Scholar 

  61. Esmaeili MA (2014) Advanced glycation end product inhibitory effect of quercetin-3-O-rutinoside, isolated from Teucrium polium. Pharm Sci 19:125–134

    CAS  Google Scholar 

  62. Seri A, Khorsand M, Rezaei Z et al (2017) Inhibitory effect of Bunium persicum hydroalcoholic extract on glucose-induced albumin glycation, oxidation, and aggregation in vitro. Iran J Med Sci 42:369–376

    PubMed  PubMed Central  Google Scholar 

  63. Shi XJ, Li D, Xie J et al (2012) Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Polym Chem 57:1109–1115

    CAS  Google Scholar 

  64. Abrosimova KV, Shulenina OV, Paston SV (2016) FTIR study of secondary structure of bovine serum albumin and ovalbumin. J Phys 769:012016

    Google Scholar 

  65. Reinstädler D, Fabian H, Backmann J, Naumann D (1996) Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Biochemistry 35:15822–15830

    Article  PubMed  Google Scholar 

  66. Reisdorf WC, Krimm S (1996) Infrared amide I ‘band of the coiled coil. Biochemistry 35:1383–1386

    Article  CAS  PubMed  Google Scholar 

  67. Gilmanshin R, Williams S, Callender RH et al (1997) Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci USA 94:3709–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murayama K, Tomida M (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:11526–11532

    Article  CAS  PubMed  Google Scholar 

  69. Charbonneau DM, Tajmir-Riahi HA (2010) Study on the interaction of cationic lipids with bovine serum albumin. J Phys Chem B 114:1148–1155

    Article  CAS  PubMed  Google Scholar 

  70. Monacelli F, Storace D, D’Arrigo C et al (2013) Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis. Int J Mol Sci 14:10694–10709

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wei Y, Chen L, Chen J et al (2009) Rapid glycation with d-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10. https://doi.org/10.1186/1471-2121-10-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Olchowik E, Sciepuk A, Mavlyanov S et al (2012) Antioxidant capacities of polyphenols from Sumac (Rhus typhina L.) leaves in protection of erythrocytes against oxidative damage. Biomed Prev Nutr 2:99–105

    Article  Google Scholar 

  73. Olchowik-Grabarek E, Makarova K, Mavlyanov S et al (2018) Comparative analysis of BPA and HQ toxic impact on human erythrocytes, protective effect mechanism of tannins (Rhus typhina). Environ Sci Pollut Res Int 25:1200–1209

    Article  CAS  PubMed  Google Scholar 

  74. Negre-Salvayre A, Salvayre R, Auge N et al (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11:3071–3109

    Article  CAS  PubMed  Google Scholar 

  75. Khangholi S, Majid FAA, Berwary NJA et al (2015) The mechanisms of inhibition of advanced glycation endproducts formation through polyphenols in hyperglycemic condition. Planta Med 82:32–45

    Article  PubMed  Google Scholar 

  76. Bachewal P, Gundu C, Yerra VG et al (2018) Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. BioFactors 44:109–122

    Article  CAS  PubMed  Google Scholar 

  77. Oyenihi AB, Ayeleso AO, Mukwevho E, Musola B (2015) Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015:515042. https://doi.org/10.1155/2015/515042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spanguolo L, Posta SD, Fanali C et al (2021) Antioxidant and antiglycation effects of polyphenol compoundsextracted from hazelnut skin on advanced glycation end-products (AGEs) formation. Antioxidants 10:424

    Article  Google Scholar 

  79. Sandireddy R, Yerra VG, Areti A et al (2014) Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014:674987. https://doi.org/10.1155/2014/674987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun C, Zhao C, Capanoglu E et al (2020) Dietary polyphenols as antidiabetic agents: advances and opportunities. Food Front 1:18–44

    Article  Google Scholar 

  81. Keum YS, Han YH, Liew C et al (2006) Induction of heme oxygenase-1 (HO-1) and NAD[P]H: quinone oxidoreductase 1 (NQO1) by a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) in primary-cultured human and rat hepatocytes. Pharm Res 23:2586–2594

    Article  CAS  PubMed  Google Scholar 

  82. Yerra VG, Kumar A (2017) Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Mol Neurobiol 54:2301–2312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology (DST), Government of India and Ministry of Science and Higher Education of Poland in the frame of Indo-Poland bilateral Cooperation scheme. The Authors like to thanks M.Sc. Anna Roszkowska from the Laboratory of Molecular Biophysics (University of Bialystok, Poland) for technical assistance.

Funding

This work was supported by Department of Science and Technology (DST), Government of India and Ministry of Science and Higher Education of Poland in the frame of Indo-Poland bilateral Cooperation scheme.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, methodology, software, investigation, formal analysis, writing original draft preparation, EO-G: methodology, investigation, writing—review& editing, ATD: investigation, writing—review & editing, LS: investigation, AK: investigation, methodology, writing—review & editing, NA: Investigation, PM: investigation, MZ: writing—review & editing.

Corresponding author

Correspondence to Szymon Sekowski.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekowski, S., Olchowik-Grabarek, E., Dubis, A.T. et al. Inhibition of AGEs formation, antioxidative, and cytoprotective activity of Sumac (Rhus typhina L.) tannin under hyperglycemia: molecular and cellular study. Mol Cell Biochem 478, 443–457 (2023). https://doi.org/10.1007/s11010-022-04522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04522-0

Keywords

Navigation