Skip to main content
Log in

Bergapten promotes bone marrow stromal cell differentiation into osteoblasts in vitro and in vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Many recent studies have suggested that bergapten (BP), a class of native compound with numerous biological activities such as anti-resorptive properties, may exert protective effects against postmenopausal bone loss. However, it remains unknown whether BP regulates or improves the osteogenic function of bone marrow stromal cells (BMSCs) in the treatment and prevention of osteoporosis. In our study, BMSCs were cultured in osteogenic induction medium with the addition of BP for 2 weeks and an ovariectomized mouse model of osteoporosis was used to investigate the anti-resorptive effect of BP by gavage administration for 3 months. The concentrations of BP used were 0.1, 1, and 10 μmol/L in vitro and the gavage dose was 20 mg/kg/d. The result of our study indicated that BP promotes the expression of alkaline phosphatase (ALP) by BMSCs in vitro in a dose-dependent manner, as revealed by ALP staining. Runt-related transcription factor 2 and osteocalcin were up-regulated both in vitro and vivo, while osterix and collagen Iα1, assessed by immunofluorescence and immunohistochemistry, were correspondingly raised in the presence of BP in BMSCs in vitro. In addition, a protective effect of BP against ovariectomy-induced bone loss was found by distal femur micro-CT scanning, with improvements of bone metabolism parameters such as bone mineral density, trabecular number, and trabecular separation. Furthermore, WNT/β-catenin signaling was activated in the presence of BP in BMSCs in osteogenic culture. Finally, BP promoted differentiation of BMSCs into osteoblasts by up-regulation of the WNT/β-catenin pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lock CA, Lecouturier J, Mason JM, Dickinson HO (2006) Lifestyle interventions to prevent osteoporotic fractures: a systematic review. Osteoporos Int 17:20–28. doi:10.1007/s00198-005-1942-0

    Article  PubMed  Google Scholar 

  2. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  3. Leung PC, Siu WS (2013) Herbal treatment for osteoporosis: a current review. J Tradit Complement Med 3:82–87. doi:10.4103/2225-4110.110407

    Article  PubMed Central  PubMed  Google Scholar 

  4. Notelovitz M (1997) Estrogen therapy and osteoporosis: principles and practice. Am J Med Sci 313:2–12

    Article  CAS  PubMed  Google Scholar 

  5. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative I (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  6. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    Article  Google Scholar 

  7. Nyandege AN, Slattum PW, Harpe SE (2015) Risk of fracture and the concomitant use of bisphosphonates with osteoporosis-inducing medications. Ann Pharmacother 49:437–447. doi:10.1177/1060028015569594

    Article  CAS  PubMed  Google Scholar 

  8. Pathak MA, Fitzpatrick TB (1992) The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD. J Photochem Photobiol B 14:3–22

    Article  CAS  PubMed  Google Scholar 

  9. Panno ML, Giordano F, Rizza P, Pellegrino M, Zito D, Giordano C, Mauro L, Catalano S, Aquila S, Sisci D, De Amicis F, Vivacqua A, Fuqua SW, Ando S (2012) Bergapten induces ER depletion in breast cancer cells through SMAD4-mediated ubiquitination. Breast Cancer Res Treat 136:443–455. doi:10.1007/s10549-012-2282-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Panno ML, Giordano F, Mastroianni F, Palma MG, Bartella V, Carpino A, Aquila S, Ando S (2010) Breast cancer cell survival signal is affected by bergapten combined with an ultraviolet irradiation. FEBS Lett 584:2321–2326. doi:10.1016/j.febslet.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  11. Sumiyoshi M, Sakanaka M, Taniguchi M, Baba K, Kimura Y (2014) Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species under ultraviolet a irradiation. J Nat Med 68:83–94. doi:10.1007/s11418-013-0774-z

    Article  CAS  PubMed  Google Scholar 

  12. Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS (2005) Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 53:2009–2014. doi:10.1021/jf0484632

    Article  CAS  PubMed  Google Scholar 

  13. Liu WX, Jia FL, He YY, Zhang BX (2012) Protective effects of 5-methoxypsoralen against acetaminophen-induced hepatotoxicity in mice. World J Gastroenterol 18:2197–2202. doi:10.3748/wjg.v18.i18.2197

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bose SK, Dewanjee S, Sahu R, Dey SP (2011) Effect of bergapten from heracleum nepalense root on production of proinflammatory cytokines. Nat Prod Res 25:1444–1449. doi:10.1080/14786410902800665

    Article  CAS  PubMed  Google Scholar 

  15. Zheng M, Ge Y, Li H, Yan M, Zhou J, Zhang Y (2014) Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. Int Orthop 38:627–634. doi:10.1007/s00264-013-2184-y

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tang CH, Yang RS, Chien MY, Chen CC, Fu WM (2008) Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur J Pharmacol 579:40–49. doi:10.1016/j.ejphar.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Qin L, He W, Van Puyvelde L, Maes D, Adams A, Zheng H, De Kimpe N (2007) Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med 73:13–19. doi:10.1055/s-2006-951724

    Article  CAS  PubMed  Google Scholar 

  18. Komori T (2015) Animal models for osteoporosis. Eur J Pharmacol. doi:10.1016/j.ejphar.2015.03.028

    PubMed  Google Scholar 

  19. Kuznetsov S, Gehron Robey P (1996) Species differences in growth requirements for bone marrow stromal fibroblast colony formation in vitro. Calcif Tissue Int 59:265–270

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  21. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  CAS  PubMed  Google Scholar 

  22. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154

    Article  CAS  PubMed  Google Scholar 

  23. Lane NE, Kelman A (2003) A review of anabolic therapies for osteoporosis. Arthritis Res Ther 5:214–222. doi:10.1186/ar797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148. doi:10.1016/s0076-6879(06)19006-0

    Article  CAS  PubMed  Google Scholar 

  25. Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773. doi:10.1359/jbmr.1998.13.5.763

    Article  CAS  PubMed  Google Scholar 

  26. Das S, Crockett JC (2013) Osteoporosis—a current view of pharmacological prevention and treatment. Drug Des Dev Ther 7:435–448. doi:10.2147/DDDT.S31504

    CAS  Google Scholar 

  27. Heiss C, Govindarajan P, Schlewitz G, Hemdan NY, Schliefke N, Alt V, Thormann U, Lips KS, Wenisch S, Langheinrich AC, Zahner D, Schnettler R (2012) Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA. Med Sci Monit 18:Br199–Br207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cosman F (2014) Combination therapy for osteoporosis: a reappraisal. Bonekey Rep 3:518. doi:10.1038/bonekey.2014.13

    Article  PubMed Central  PubMed  Google Scholar 

  29. Govindarajan P, Schlewitz G, Schliefke N, Weisweiler D, Alt V, Thormann U, Lips KS, Wenisch S, Langheinrich AC, Zahner D, Hemdan NY, Bocker W, Schnettler R, Heiss C (2013) Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA. Med Sci Monit Basic Res 19:76–86. doi:10.12659/MSMBR.883815

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gambacciani M, Levancini M (2015) Hormone replacement therapy: who should be treated? Minerva Ginecol 67:249–255

    CAS  PubMed  Google Scholar 

  31. Maclennan AH (2009) Evidence-based review of therapies at the menopause. Int J Evid Based Healthc 7:112–123. doi:10.1111/j.1744-1609.2009.00133.x

    Article  PubMed  Google Scholar 

  32. Meng F, Xiong Z, Sun Y, Li F (2004) Coumarins from Cnidium monnieri (L.) and their proliferation stimulating activity on osteoblast-like UMR106 cells. Pharmazie 59:643–645

    CAS  PubMed  Google Scholar 

  33. Lerner UH, Ohlsson C (2015) The WNT system: background and its role in bone. J Int Med. doi:10.1111/joim.12368

    Google Scholar 

  34. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738. doi:10.1016/j.devcel.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  35. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750. doi:10.1016/j.devcel.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  36. Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764. doi:10.1016/j.devcel.2005.02.017

    Article  CAS  PubMed  Google Scholar 

  37. Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, Williams BO (2005) Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 280:21162–21168. doi:10.1074/jbc.M501900200

    Article  CAS  PubMed  Google Scholar 

  38. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085. doi:10.1128/MCB.01428-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hwang JH, Cha PH, Han G, Bach TT, Min DS, choi KY (2015) Euodia sutchuenensis dode extract stimulates osteoblast differentiation via Wnt/beta-catenin pathway activation. Exp Mol Med 47:e152. doi:10.1038/emm.2014.115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lim JJ, Li X, Lu J, Pedego TM, Demer L, Tintut Y (2015) Protective role of Smad6 in inflammation-induced valvular cell calcification. J Cell Biochem. doi:10.1002/jcb.25186

    PubMed Central  Google Scholar 

  41. Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, Wolfgang MJ, Clemens TL, Riddle RC (2015) Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. doi:10.1128/mcb.01343-14

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zhang Xiao-dong (Department of Medical Image, The Third Affiliated Hospital of Southern Medical University, Guangdong, PR China) for excellent technical support.

Author contribution

Design of the study: X J-j, Z W-j, Z X-t and Z W-l. Acquisition of data: X J-j, Z W-j, Z X-t, Z W-l, W X-x, Y S-h and J F. Interpretation of data: W X-x, Y S-h, J F, Z Y-x and C F-n . Manuscript preparation: X J-j, Z W-j, Z X-t, Z W-l and L S-l.

Funding

This work was supported by Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-lin Li.

Ethics declarations

Conflict of interest

None.

Ethics approval

Ethical approval was given by the Medical Ethics Committee of Southern Medical University.

Provenance and peer review

Not commissioned; externally peer reviewed.

Additional information

Ji-jie Xiao, Wen-ji Zhao, Xin-tao Zhang, and Wen-long Zhao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2015_2517_MOESM1_ESM.jpg

Supplementary Fig. 1. BP promotes the expression of RUNX2, OCN, β-catenin and GSK-3β. BMSCs were cultured in OIM alone without DMSO and BP or supplemented with BP (0.1 μM) for 2 weeks. BMSC lysates (20 μg protein) were prepared and subjected to western blot analysis using antibodies specific for OCN (a, b), RUNX2 (a, c), β-catenin (a, d) and GSK-3β (a, e) as described in the methods. The expression of OCN (b), RUNX2 (c), β-catenin (d) and GSK-3β (e) increased compared to the OIM group. Data are expressed as fold change versus OIM group. The results show that BP promotes the expression of RUNX2, OCN, β-catenin and GSK-3β compared to the OIM group. * P < 0.05 compared to OIM alone. Columns represent the mean ± SEM from nine wells per group (b–e). Below is the link to the electronic supplementary material. Supplementary material 1 (JPEG 192 kb)

11010_2015_2517_MOESM2_ESM.jpg

Supplementary Fig. 2. BP has no effect on the protein expression of RUNX2, OCN, β-catenin and GSK-3β in the absence of differentiation medium. BP (1–10 μM) did not alter the protein expression of OCN (a, b), RUNX2 (a, c), β-catenin (a, d) or GSK-3β (a, e) when cells were cultured for 14 days in the absence of differentiation medium. Columns represent the mean ± SEM from nine wells per group (b–e). Supplementary material 2 (JPEG 202 kb)

11010_2015_2517_MOESM3_ESM.jpg

Supplementary Fig. 3. BD did not have significant effect on endogenous stem cells as results of IHC. Through the characteristic markers of marrow stromal cells, such as CD105 (a-a’’ and c) and CD106 (b-b’’ and d), endogenous stem cells did not change significantly after BD treatment. Compared to OVX+BP group (a’’ and b’’), the expression intensity of CD105 and CD106 in OVX group (a’ and b’) and Sham group (a and b) got even distribution under microscope in IHC staining and had no significant difference between each other. n = 10. All values are shown as mean ± SEM of data from three independent experiments (c–d). Supplementary material 3 (JPEG 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Jj., Zhao, Wj., Zhang, Xt. et al. Bergapten promotes bone marrow stromal cell differentiation into osteoblasts in vitro and in vivo. Mol Cell Biochem 409, 113–122 (2015). https://doi.org/10.1007/s11010-015-2517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2517-9

Keywords

Navigation