Skip to main content

Advertisement

Log in

miR-526a regulates apoptotic cell growth in human carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play vital roles in the regulation of cell cycle, cell growth, apoptosis, and tumorigenesis. Our previous studies showed that miR-526a positively regulated innate immune response by suppressing CYLD expression, however, the functional relevance of miR-526a expression and cell growth remains to be evaluated. In this study, miR-526a overexpression was found to promote cancer cell proliferation, migration, and anchor-independent colony formation. The molecular mechanism(s) of miR-526a-mediated growth stimulation is associated with rapid cell cycle progression and inhibition of cell apoptosis by targeting CYLD. Taken together, these results provide evidence to show the stimulatory role of miR-526a in tumor migration and invasion through modulation of the canonical NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karin M (2008) The IkappaB kinase—a bridge between inflammation and cancer. Cell Res 18:334–342

    Article  CAS  PubMed  Google Scholar 

  2. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ancrile BB, O’Hayer KM, Counter CM (2008) Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics. Mol Interv 8:22–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Clement JF, Meloche S, Servant MJ (2008) The IKK-related kinases: from innate immunity to oncogenesis. Cell Res 18:889–899

    Article  CAS  PubMed  Google Scholar 

  5. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88:1358–1366

    Article  CAS  PubMed  Google Scholar 

  7. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369–378

    Article  CAS  PubMed  Google Scholar 

  9. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  CAS  PubMed  Google Scholar 

  10. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

  11. van den Ouweland AM, Elfferich P, Lamping R, van de Graaf R, van Veghel-Plandsoen MM, Franken SM, Houweling AC (2011) Identification of a large rearrangement in CYLD as a cause of familial cylindromatosis. Fam Cancer 10:127–132

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424:801–805

    Article  CAS  PubMed  Google Scholar 

  13. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Courtois G (2008) Tumor suppressor CYLD: negative regulation of NF-kappaB signaling and more. Cell Mol Life Sci 65:1123–1132

    Article  CAS  PubMed  Google Scholar 

  16. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, Gevaert K, Beyaert R (2011) T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30:1742–1752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R, Ting AT (2008) The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9:930–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R (2006) Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125:665–677

    Article  CAS  PubMed  Google Scholar 

  19. Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T, Pfeifer A, Fassler R, Bosserhoff AK (2009) Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 206:221–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hellerbrand C, Bumes E, Bataille F, Dietmaier W, Massoumi R, Bosserhoff AK (2007) Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28:21–27

    Article  CAS  PubMed  Google Scholar 

  21. Zhong S, Fields CR, Su N, Pan YX, Robertson KD (2007) Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26:2621–2634

    Article  CAS  PubMed  Google Scholar 

  22. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rajan N, Elliott R, Clewes O, Mackay A, Reis-Filho JS, Burn J, Langtry J, Sieber-Blum M, Lord CJ, Ashworth A (2011) Dysregulated TRK signalling is a therapeutic target in CYLD defective tumours. Oncogene 30:4243–4260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Legha SS (1995) Re: treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 87:319

    Article  CAS  PubMed  Google Scholar 

  26. Park Y, Jin HS, Aki D, Lee J, Liu YC (2014) The ubiquitin system in immune regulation. Adv Immunol 124:17–66

    Article  PubMed  Google Scholar 

  27. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chen F, Qi X, Qian M, Dai Y, Sun Y (2014) Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies? Protein Cell 5:816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fiil BK, Gyrd-Hansen M (2014) Met1-linked ubiquitination in immune signalling. FEBS J 281:4337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. He F, Guo FC, Li Z, Yu HC, Ma PF, Zhao JL, Feng L, Li WN, Liu XW, Qin HY, Dou KF and Han H (2015) Myeloid-specific disruption of RBP-J ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice. Hepatology 61:303–314

  31. Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX (2014) Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 3:e01489

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Beijing Municipal Science & Technology Commission (Z121107005112012) and General Hospital of Chinese People’s Armed Police Forces (WZ 2011021 and WZ 2010016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buchang Zhang, Qingjun Ma or Zirui Zheng.

Additional information

Xiaoli Yang, Cui Wang, Changzhi Xu and Zhifeng Yan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, C., Xu, C. et al. miR-526a regulates apoptotic cell growth in human carcinoma cells. Mol Cell Biochem 407, 69–76 (2015). https://doi.org/10.1007/s11010-015-2455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2455-6

Keywords

Navigation