Skip to main content
Log in

Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and RAW 264.7 cells by a Maillard reaction product [5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have recently isolated and characterized the chemical structure of a bioactive Maillard reaction product, [5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol (F3-A), from an aqueous glucose (Glc) and lysine (Lys) Maillard reaction (MR) model system. Here, we investigate further the mechanisms for anti-inflammatory effects of this product in Caco-2 and RAW 264.7 cells. The anti-inflammatory capacity of F3-A recovered from Glc–Lys MR mixture and a synthesized product were compared with those of the specific inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), and the nuclear factor-kappa B (NF-κB) inhibitor, pyrrolidine dithiocarbamate (PDTC). F3-A produced a dose-dependent inhibition of extracellular nitric oxide (NO) production and iNOS translation in Caco-2 cells induced with interferon gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA), and these effects were more potent than those obtained with AG. Moreover, a combination of F3-A and AG to attenuate intestinal inflammation was additive. However, F3-A inhibited only intracellular NO production in RAW 264.7 cells and did not inhibit COX-2 or NF-κB in either cell line. We conclude that the anti-inflammatory properties of F3-A are cell specific, working through different mechanism between macrophages and intestinal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

COX-2:

Cyclooxygenase-2

DAF-2:

4,5-Diaminofluorescein

DAF-2DA:

4,5-Diaminofluorescein diacetate

DAF-2T:

Triazolofluorescein

DCM:

Dichloromethane

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

F3-A:

[5-(5,6-Dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol

F3-AC19:

Isolated F3-A purified by flash chromatography

F3-AS:

Synthesized F3-A

Glc:

Glucose

HMF:

Hydroxymethylfurfural

HMFA:

5-Hydroxymethyl-2-furoic acid

IBD:

Inflammatory bowel disease

IECs:

Intestinal epithelial cells

IFN-γ:

Interferon gamma

IL-6:

Interleukin-6

IL-8:

Interleukin 8

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

Lys:

Lysine

3-MCP:

3-Methyl-1,2-cyclopentanedione

MEM:

Minimum essential medium

MR:

Maillard reaction

MRPs:

Maillard reaction products

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

Nuclear factor-kappa B

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

NO2 :

Nitrite

NO3 :

Nitrate

NOD:

Nitric oxide dioxygenase

PDTC:

Pyrrolidine dithiocarbamate

PMA:

Phorbol 12-myristate 13-acetate

Rf:

Retention factor

RT-PCR:

Reverse transcription polymerase chain reaction

TLC:

Thin layer chromatography

TBST:

Tris-buffered saline-Tween

References

  1. Liu J, Zhao S, Tang J, Li Z, Zhong T, Liu Y, Chen D, Zhao M, Li Y, Gong X (2009) Advanced glycation end products and lipopolysaccharide synergistically stimulate pro-inflammatory cytokine/chemokine production in endothelial cells via activation of both mitogen-activated protein kinases and nuclear factor-κB. FEBS J 276:4598–4606

    Article  CAS  PubMed  Google Scholar 

  2. Chang P, Chen T, Chang C, Hou C, Chan P, Lee H (2004) Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway. Kidney Int 65:1664–1675

    Article  CAS  PubMed  Google Scholar 

  3. Chung JH, Choi SY, Kim JY, Kim DH, Lee JW, Choi JS, Chung HY (2007) 3-Methyl-1, 2-cyclopentanedione down-regulates age-related NF-κB signaling cascade. J Agric Food Chem 55:6787–6792

    Article  CAS  PubMed  Google Scholar 

  4. Jin P, Kim J, Choi D, Lee Y, Jung HS, Hong JT (2013) Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2, 4-bis (p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer’s disease mice model. J Neuroinflamm 10:2

    Article  CAS  Google Scholar 

  5. Chen X, Chen G, Chen H, Zhang Y, Kitts D (2015) Elucidation of the chemical structure and determination of the production conditions for a bioactive Maillard reaction product, [5-(5, 6-dihydro-4H-pyridin-3-ylidenemethyl) furan-2-yl]-methanol, isolated from a glucose-lysine heated mixture. J Agric Food Chem 63:1739–1746

    Article  CAS  PubMed  Google Scholar 

  6. Jobin C, Sartor RB (2000) The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol 278:C451–C462

    CAS  PubMed  Google Scholar 

  7. Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    Article  CAS  PubMed  Google Scholar 

  8. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS (2005) Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 102:99–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol Gastrointest Liver Physiol 33:G225

    Google Scholar 

  10. Marion R, Coeffier M, Leplingard A, Favennec L, Ducrotte P, Dechelotte P (2003) Cytokine-stimulated nitric oxide production and inducible NO-synthase mRNA level in human intestinal cells: lack of modulation by glutamine. Clin Nutr 22:523–528

    Article  CAS  PubMed  Google Scholar 

  11. Kimura H, Hokari R, Miura S, Shigematsu T, Hirokawa M, Akiba Y, Kurose I, Higuchi H, Fujimori H, Tsuzuki Y, Serizawa H, Ishii H (1998) Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 42:180–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Singer II, Kawka DW, Scott S, Weidner JR, Mumford RA, Riehl TE, Stenson WF (1996) Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111:871–885

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Kitts DD (2008) Determining conditions for nitric oxide synthesis in Caco-2 cells using Taguchi and factorial experimental designs. Anal Biochem 381:185–192

    Article  CAS  PubMed  Google Scholar 

  14. Kim J, Han A, Park E, Kim J, Cho W, Lee J, Seo E, Lee K (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-KAPPA B Inactivation in RAW 264.7 Macrophage Cells. Biol Pharm Bull 30:2345–2351

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Kitts DD (2012) Characterization of antioxidant and anti-inflammatory activities of bioactive fractions recovered from a glucose–lysine Maillard reaction model system. Mol Cell Biochem 364:147–157

    Article  CAS  PubMed  Google Scholar 

  16. Hu C, Zawistowski J, Ling W, Kitts DD (2003) Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J Agric Food Chem 51:5271–5277

    Article  CAS  PubMed  Google Scholar 

  17. Alderton W, Cooper C, Knowles R (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chin MP, Schauer DB, Deen WM (2010) Nitric oxide, oxygen, and superoxide formation and consumption in macrophages and colonic epithelial cells. Chem Res Toxicol 23:778–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lewis RS, Tamir S, Tannenbaum SR, Deen WM (1995) Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J Biol Chem 270:29350–29355

    Article  CAS  PubMed  Google Scholar 

  20. Subczynski WK, Lomnicka M, Hyde JS (1996) Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res 24:343–349

    Article  CAS  PubMed  Google Scholar 

  21. Lymar SV, Hurst JK (1996) Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol 9:845–850

    Article  CAS  PubMed  Google Scholar 

  22. Gardner PR, Martin LA, Hall D, Gardner AM (2001) Dioxygen-dependent metabolism of nitric oxide in mammalian cells. Free Radic Biol Med 31:191–204

    Article  CAS  PubMed  Google Scholar 

  23. Gardner PR, Gardner AM, Martin LA, Dou Y, Li T, Olson JS, Zhu H, Riggs AF (2000) Nitric-oxide dioxygenase activity and function of flavohemoglobins. Sensitivity to nitric oxide and carbon monoxide inhibition. J Biol Chem 275:31581–31587

    Article  CAS  PubMed  Google Scholar 

  24. Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Stuehr DJ, Marletta MA (1987) Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Res 47:5590–5594

    CAS  PubMed  Google Scholar 

  26. Tayeh MA, Marletta MA (1989) Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem 264:19654–19658

    CAS  PubMed  Google Scholar 

  27. Iyengar R, Stuehr DJ, Marletta MA (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84:6369–6373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hu C, Kitts DD (2004) Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264. 7 cells. Mol Cell Biochem 265:107–113

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Zong C, Gao Y, Cai R, Fang L, Lu J, Liu F, Qi Y (2014) Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264. 7 cells. Eur J Pharmacol 723:339–345

    Article  CAS  PubMed  Google Scholar 

  30. Uwai K, Osanai Y, Imaizumi T, Kanno S, Takeshita M, Ishikawa M (2008) Inhibitory effect of the alkyl side chain of caffeic acid analogues on lipopolysaccharide-induced nitric oxide production in RAW264. 7 macrophages. Bioorg Med Chem 16:7795–7803

    Article  CAS  PubMed  Google Scholar 

  31. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a NSERC-discovery grant to DDK. We also thank Yongting Chen for help with protein and mRNA extraction.

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Kitts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XM., Kitts, D.D. Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and RAW 264.7 cells by a Maillard reaction product [5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]-methanol. Mol Cell Biochem 406, 205–215 (2015). https://doi.org/10.1007/s11010-015-2438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2438-7

Keywords

Navigation