Skip to main content
Log in

An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Since its introduction by Hastings (Phys Rev B 69:104431, 2004), the technique of quasi-adiabatic continuation has become a central tool in the discussion and classification of ground-state phases. It connects the ground states of self-adjoint Hamiltonians in the same phase by a unitary quasi-local transformation. This paper takes a step towards extending this result to non-self-adjoint perturbations, though, for technical reason, we restrict ourselves here to weak perturbations of non-interacting spins. The extension to non-self-adjoint perturbation is important for potential applications to Glauber dynamics (and its quantum analogues). In contrast to the standard quasi-adiabatic transformation, the transformation constructed here is exponentially local. Our scheme is inspired by KAM theory, with frustration-free operators playing the role of integrable Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanin, D., De Roeck, W., Huveneers, F., Ho, W.W.: Asymptotic energy conservation in periodically driven many-body systems. arXiv:1509.05386 (2015)

  2. Albanese, C.: Unitary dressing transformations and exponential decay below threshold for quantum spin systems. Commun. Math. Phys. 134(1–27), 237–272 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brandao, F., Cubitt, T., Lucia, A., Michalakis, S., Perez-Garcia, D.: Area law for fixed points of rapidly mixing dissipative quantum systems. J. Math. Phys. 56, 102202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bravyi, S., Hastings, M.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609–627 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Crawford, N., De Roeck, W., Schütz, M.: Uniqueness regime for Markov dynamics on quantum lattice spin systems. J. Phys. A: Math. Theor. 48, 425203 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cubitt, T., Lucia, A., Michalakis, S., Perez-Garcia, D.: Stability of local quantum dissipative systems. Commun. Math. Phys. 337, 1275–1315 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Datta, N., Kennedy, T.: Expansions for one quasiparticle states in spin 1/2 systems. J. Stat. Phys. 108, 373–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Roeck, W., Schütz, M.: Local perturbations perturb-exponentially-locally. J. Math. Phys. 56, 061901 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. De Roeck, W., Maes, C., Netočný, K., Schütz, M.: Locality and nonlocality of classical restrictions of quantum spin systems with applications to quantum large deviations and entanglement. J. Math. Phys. 56, 023301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fannes, M., Nachtergaele, B., Werner, R.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hastings, M.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  13. Hastings, M.: Solving gapped Hamiltonians locally. Phys. Rev. B 73, 085115 (2006)

    Article  ADS  Google Scholar 

  14. Kastoryano, M., Temme, K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kato, T.: Perturbation Theory of Linear Operators. Springer, New York (1995)

    MATH  Google Scholar 

  16. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in \(S = 1\) quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kirkwood, J.R., Thomas, L.E.: Expansions and phase transitions for the ground states of quantum Ising lattice systems. Commun. Math. Phys. 88, 569–580 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kraus, B., Büchler, H., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008)

    Article  ADS  Google Scholar 

  19. Michalakis, S., Zwolak, J.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nachtergaele, B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Nachtergaele, B., Vershynina, A., Zagrebnov, V.: Lieb-Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. AMS Contemp. Math. 552, 161–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Netočný, K., Redig, F.: Large deviations for quantum spin systems. J. Stat. Phys. 117, 521–547 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Poulin, D.: Lieb-Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104, 190401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Spitzer, W., Starr, S.: Improved bounds on the spectral gap above frustration-free ground states of quantum spin chains. Lett. Math. Phys. 63, 165–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szehr, O., Wolf, M.: Perturbation theory for parent Hamiltonians of matrix product states. J. Stat. Phys. 159, 752–771 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Verstraete, F., Wolf, M., Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

    Article  Google Scholar 

  28. Ueltschi, D.: Cluster expansions and correlation functions. Mosc. Math. J. 4, 511–522 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Yarotsky, D.A.: Perturbations of ground states in weakly interacting quantum spin systems. J. Math. Phys. 45, 2134 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yarotsky, D.A.: Uniqueness of the ground state in weak perturbations of non-interacting gapped quantum lattice systems. J. Stat. Phys. 118, 119–144 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yarotsky, D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 569–580 (1983)

    MathSciNet  Google Scholar 

  32. Znidaric, M.: Relaxation times of dissipative many-body quantum systems. Phys. Rev. E 92, 042143 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank Nick Crawford for many helpful discussions. Furthermore, we are thankful to the DFG (German Science Foundation) and the Belgian Interuniversity Attraction Pole (P07/18 Dygest) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Schütz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeck, W.D., Schütz, M. An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory. Lett Math Phys 107, 505–532 (2017). https://doi.org/10.1007/s11005-016-0913-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0913-z

Keywords

Mathematics Subject Classification

Navigation