Skip to main content
Log in

Double Ramification Cycles and Quantum Integrable Systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085–1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buryak A.: Dubrovin–Zhang hierarchy for the Hodge integrals. Commun. Number Theory Phys. 9(2), 239–271 (2015)

    Article  MathSciNet  Google Scholar 

  2. Buryak A.: Double ramification cycles and integrable hierarchies. Commun. Math. Phys. 336(3), 1085–1107 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Buryak, A., Rossi, P.: Recursion relations for double ramification hierarchies. Commun. Math. Phys. (2014). arXiv:1411.6797

  4. Buryak A., Shadrin S., Spitz L., Zvonkine D.: Integrals of psi-classes over double ramification cycles. Am. J. Math. 137(3), 699–737 (2015)

    Article  MathSciNet  Google Scholar 

  5. Carlet G., Dubrovin B., Zhang Y.: The extended Toda hierarchy. Mosc. Math. J. 4(2), 313–332 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Cavalieri R., Marcus S., Wise J.: Polynomial families of tautological classes on \({\mathcal{M}_{g,n}^{rt}}\). J. Pure Appl. Algebra 216(4), 950–981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubrovin, B.A., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, p. 295. (a new 2005 version of). arXiv:math/0108160v1

  8. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory, GAFA 2000 Visions in Mathematics special volume, part II, pp. 560–673 (2000)

  9. Fabert, O., Rossi, P.: String, dilaton and divisor equation in symplectic field theory. Int. Math. Res. Not. 19, 4384–4404 (2011)

    MathSciNet  Google Scholar 

  10. Ionel E.-N.: Topological recursive relations in \({H^{2g}(\overline{\mathcal{M}}_{g,n})}\). Invent. Math. 148(3), 627–658 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Pandharipande R., Pixton A., Zvonkine D.: Relations on \({\overline{\mathcal{M}}_{g,n}}\) via 3-spin structures. J. Am. Math. Soc. 28(1), 279–309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rossi P.: Gromov-Witten invariants of target curves via symplectic field theory. J. Geom. Phys. 58(8), 931–941 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Rossi, P.: Integrable systems and holomorphic curves. In: Proceedings of the Gökova Geometry-topology conference 2009, pp. 34–57. Int. Press, Somerville (2010)

  14. Zvonkine, D.: Intersection of double loci with boundary strata (2015, unpublished note)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Rossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryak, A., Rossi, P. Double Ramification Cycles and Quantum Integrable Systems. Lett Math Phys 106, 289–317 (2016). https://doi.org/10.1007/s11005-015-0814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0814-6

Mathematics Subject Classification

Keywords

Navigation