Skip to main content

Advertisement

Log in

A sediment budget for the Transkei Basin, Southwest Indian Ocean

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Deep sea sediment budgets can be used to constrain erosion rates in the neighboring continents from which the material was derived. Here we construct a sediment budget for the Transkei Basin, offshore South Africa using an existing seismic reflection survey and dated by correlation of seismic attributes to dated sections in nearby basins. Backstripping of the sections reveals that sediment accumulation rates fell from 110 to 11 Ma, with a possible period of rapid accumulation from 36 to 34 Ma that may be driven by strengthening of the Antarctic Bottom Water (AABW). The long term trend is linked to erosional degradation of the onshore continental escarpment, formed as a consequence of continental break-up. No change is noted at 30 Ma, coincident with proposed uplift of southern Africa driven by plume activity. The basin shows a significant increase in sediment accumulation after 11 Ma, which we interpret to reflect strengthening and rerouting of the AABW from the south into Transkei Basin, as a far field effect of the start of closure of the Indonesian Throughflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen PA, Allen JR (2006) Basin analysis—principles and applications, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Armitage JJ, Jones TD, Duller RA, Whittaker AC, Allen PA (2013) Temporal buffering of climate-driven sediment flux cycles by transient catchment response. Earth Planet Sci Lett 369–370:200–210

    Article  Google Scholar 

  • Ben-Avraham Z, Hartnady CJH, Malan JA (1993) Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia microplate. Earth Planet Sci Lett 117:43–58

    Article  Google Scholar 

  • Billups K, Channell JET, Zachos J (2002) Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic. Paleoceanography 17(1):4–1–4–11. doi:10.1029/2000PA000568

    Google Scholar 

  • Brown RL, Summerfield M, Gleadow AJW (2002) Denudational history along a transect across the Drakensberg Escarpment of Southern Africa derived from apatite fission track thermochronology. J Geophys Res 107(12):2350. doi:10.1029/2001JB000745

    Article  Google Scholar 

  • Burke K (1996) The African Plate. S Afr J Geol 99(4):1–163

    Google Scholar 

  • Burke K, Gunnell Y (2008) The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geol Soc Am. doi:10.1130/2008.1201

    Google Scholar 

  • Clift PD (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet Sci Lett 241(3–4):571–580

    Article  Google Scholar 

  • Clift PD, Layne GD, Blusztajn J (2004) Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in east Asia. In: Clift P, Kuhnt W, Wang P, Hayes D (eds) Continent-ocean interactions in the East Asian Marginal seas, vol 149., Geophysical MonographAmerican Geophysical Union, Washington, pp 255–282

    Chapter  Google Scholar 

  • Cockburn HAP, Brown RW, Summerfield MA, Seidl MA (2000) Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach. Earth Planet Sci Lett 179:429–435

    Article  Google Scholar 

  • De Wit M (1999) Post-Gondwana drainage and the development of diamond placers in western South Africa. Econ Geol 94:721–740

    Article  Google Scholar 

  • de Wit MJ (2007) The Kalahari Epeiorogeny and climate change: differentiating cause and effect from core to space. Inkaba yeAfrica special volume. S Afr J Geol 110:367–392

    Article  Google Scholar 

  • Diester-Haass L, Robert C, Chamley H (1996) The Eocene-Oligocene preglacial-glacial transition in the Atlantic sector of the Southern Ocean (ODP Site 690). Mar Geol 131:123–149

    Article  Google Scholar 

  • Doucouré CM, de Wit MJ (2003) Old inherited origin for the present near—bimodal topography of Africa. J Afr Earth Sc 36:371–388

    Article  Google Scholar 

  • Du Toit SR (1937) Our Wandering Continents. Oliver and Boyd, London

    Google Scholar 

  • Du Toit SR, Leith MJ (1974) The J(c)-1 bore-hole on the continental shelf near Stanger, Natal. Geol Soc S Afr Trans 77:247–252

    Google Scholar 

  • Fullerton LG, Frey HV, Roark JH, Thomas HH (1989) Evidence for a remanent contribution in magsat data from the cretaceous quiet zone in the South Atlantic. Geophys Res lett 16:1085–1088

  • Gardner TW, Jorgensen DW, Shuman C, Lemieux CR (1987) Geomorphic and tectonic process rates: effects of measured time interval. Geology 15:259–261

    Article  Google Scholar 

  • Goodlad SW, Martin AK, Hartnady CJH (1982) Mesozoic magnetic anomalies in the southern Natal Valley. Nature 295:686–688

    Article  Google Scholar 

  • Gourlan AT, Meynadier L, Allègre CJ (2008) Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence. Earth Planet Sci Lett 267:353–364. doi:10.1016/j.epsl.2007.11.054

    Article  Google Scholar 

  • Guillocheau F, Rouby D, Robin C, Helm C, Rolland N, Le Carlier de Veslud C, Braun J (2012) Quantification and causes of the terrigenous sediment budget at the scale of a continental margin: a new method applied to the Namibia-South Africa margin. Basin Res 24(1):3–30. doi:10.1111/j.1365-2117.2011.00511.x

    Article  Google Scholar 

  • Heuer L (2009) The evolution of neodymium, lead and hafnium Isotopes in the Southwest Indian Ocean: ferromangese crust records of the past 20 million years. MS thesis, Christian-Albrechts-Universität, Kiel, 184

  • Kolla V, Kostecki JA, Henderson L, He L (1992) Morphology and quaternary sedimentation of the mozambique fan and environs, Southwestern Indian Ocean. In: Stow DAV (ed) Deep-water turbidite systems, vol 3. Blackwell Publishing Ltd, Oxford, p 401

    Google Scholar 

  • Kounov A, Viola G, de Wit MJ, Andreoli M (2008) A mid cretaceous paleo-Karoo River Valley across the Knervlakte plain (northwestern coast of South Africa): evidence from apatite fission-track analysis. S Afr J Geol 111:409–420. doi:10.2113/gssajg.111.4.409

    Article  Google Scholar 

  • Kuhnt W, Holbourn A, Hall R, Zuvela M, Käse R (2004) Neogene history of the Indonesian throughflow. In: Clift PD, Wang P, Kuhnt W, Hayes D (eds) Continent-ocean interactions within East Asian Marginal seas, vol 149., Monograph American Geophysical Union, Washington, pp 299–320

  • Kusznir NJ, Roberts AM, Morley CK (1995) Forward and reverse modelling of rift basin formation. In: Lambiase JJ (ed) Hydrocarbon habitat in rift basins, vol 80., Special Publication Geological Society, London, pp 33–56

  • Lavier LL, Steckler MS, Brigaud F (2001) Climatic and tectonic controls on the Cenozoic evolution of the West African margin. Mar Geol 178:63–80

    Article  Google Scholar 

  • Li X (2012) Numerical simulation of sediment transport at the Agulhas Drift on the South African gateway in relation to its geodynamic development. University of Bremen, p 115

  • Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake passage. Earth Planet Sci Lett 236(1–2):459–470

    Article  Google Scholar 

  • Martin AK, Hartnady CJH (1986) Plate tectonic development of the Southwest Indian Ocean: a revised reconstruction of East Antarctica and Africa. J Geophys Res 91:4767–4786

    Article  Google Scholar 

  • McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size/composition slicing: parameters for paleocurrent speed and palaeoceanography. Paleoceanography 10:593–610

    Article  Google Scholar 

  • Métivier F, Gaudemer Y, Tapponnier P, Klein M (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys J Int 137(2):280–318

    Article  Google Scholar 

  • Molnar P (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu Rev Earth Planet Sci 32:67–89

    Article  Google Scholar 

  • Niemi TM, Ben Avraham Z, Hartnady CHJ, Reznikov M (2000) Post-Eocene seismic stratigraphy of the deep ocean basin adjacent to the Southeast African continental margin: a record of geostrophic bottom current systems. Mar Geol 162:237–258

    Article  Google Scholar 

  • Paul JD, Roberts GG, White N (2014) The African landscape through space and time. Tectonics 33(6):898–935. doi:10.1002/2013TC003479

    Article  Google Scholar 

  • Raab MJ, Brown RW, Gallagher K, Weber K, Gleadow AJW (2005) Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia’s Atlantic passive margin. Tectonics. doi:10.1029/2004TC001688

    Google Scholar 

  • Raab MJ, Brown RW, Gleadow AJW (2006) The interplay of tectonics, erosion and topography across the Drakensberg Escarpment, South Africa; a fission track study. Geochim Cosmochim Acta 70:A514

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Rooij DV, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154. doi:10.1016/j.margeo.2014.03.011

    Article  Google Scholar 

  • Reeves C, Wit MJd (2000) Making ends meet in Gondwana: retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12:272–280

    Article  Google Scholar 

  • Sadler PM (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J Geol 89:569–584

    Article  Google Scholar 

  • Sadler PM, Jerolmack DJ (2014) Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks. In: Smith DG, Bailey RJ, Burgess PM, Fraser AJ (eds) Strata and time; probing the gaps in our understanding, vol 404., Special PublicationGeological Society, London. doi:10.1144/SP404.7

    Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10039–10054

    Article  Google Scholar 

  • Schlüter P, Uenzelmann-Neben G (2007) Seismostratigraphic analysis of the Transkei Basin: a history of deep sea current controlled sedimentation. Mar Geol 240:99–111. doi:10.1016/j.margeo.2007.02.015

    Article  Google Scholar 

  • Schlüter P, Uenzelmann-Neben G (2008) Indications for bottom current activity since Eocene times: the climate and ocean gateway archive of the Transkei Basin, South Africa. Glob Planet Change 60(3):416–428. doi:10.1016/j.gloplacha.2007.07.002

    Article  Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Seward D, Grujic D, Schreurs G (2004) An insight into the breakup of Gondwana: identifying events through low-temperature thermochronology from the basement rocks of Madagascar. Tectonics. doi:10.1029/2003TC001556

    Google Scholar 

  • Shipboard Scientific Party (1974) Site 250. Proceedings of the Deep Sea Drilling Project 26:21–74

  • Shipboard Scientific Party (1978) Cape Basin continental rise—Sites 360 and 361. Proceedings of the deep sea drilling project XL:29–182

  • Shipboard Scientific Party (1999). Site 1088. In Gersonde, R, Hodell, DA, Blum, P, et al. (ed) Proceedings of the Ocean Drilling Program, Initial Reports, 177:1–66. Retrieve from World Wide Web http://wwwodp.tamu.edu/publications/177_IR/VOLUME/CHAPTERS/CHAP_03.PDF. Accessed 5 Jan 2015

  • Simpson G, Castelltort S (2012) Model shows that rivers transmit high-frequency climate cycles to the sedimentary record. Geology 40:1131–1134

    Article  Google Scholar 

  • Steckler MS, Mountain GS, Miller KG, Christie-Blick N (1999) Reconstruction of Tertiary progadation and clinoform development on the New Jersey passive margin by 2-D backstripping. Mar Geol 154:399–420

    Article  Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129

    Article  Google Scholar 

  • Tikku AA, Marks KM, Kovacs LC (2002) An Early Cretaceous extinct spreading center in the northern Natal Valley. Tectonophysics 347:87–108

    Article  Google Scholar 

  • Tinker J, Md Wit, Brown R (2008a) Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics 455:94–103. doi:10.1016/j.tecto.2007.11.040

    Article  Google Scholar 

  • Tinker J, Md Wit, Brown R (2008b) Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics 455:77–93. doi:10.1016/j.tecto.2007.10.009

    Article  Google Scholar 

  • Uenzelmann-Neben G, Watkeys MK, Kretzinger W, Frank M, Heuer L (2011) Palaeoceanographic interpretation of a seismic profile from the southern Mozambique Ridge, southwestern Indian Ocean. S Afr J Geol 114:449–458. doi:10.2113/gssajg.114.3-4.449

    Article  Google Scholar 

  • Zhang P, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410:891–897

    Article  Google Scholar 

Download references

Acknowledgments

PC acknowledges support from the Charles T. McCord Chair in Petroleum Geology. Alan Roberts and Nick Kusznir are thanked for letting us use their backstripping software “FlexDecomp”. The seismic data forming the base of this paper have been collected as part of project AISTEK-I funded by the German Ministry of Education and Research (BMBF) under contract No 03G0182A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Clift.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uenzelmann-Neben, G., Clift, P.D. A sediment budget for the Transkei Basin, Southwest Indian Ocean. Mar Geophys Res 36, 281–291 (2015). https://doi.org/10.1007/s11001-015-9250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-015-9250-3

Keywords

Navigation