Skip to main content
Log in

An integrated geophysical study of Vestbakken Volcanic Province, western Barents Sea continental margin, and adjacent oceanic crust

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Knølegga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Barrère C, Ebbing J, Gernigon L (2009) Offshore prolongation of Caledonian structures and basement characterization in the western Barentrs Sea from geophysical modeling. Tectonophysics 470:71–88. doi:10.1016/j.tecto.2008.07.012

    Article  Google Scholar 

  • Barrère C, Ebbing J, Gernigon L (2011) 3-D density and magnetic crustal characterization of the southwestern Barents Shelf: implications for the offshore prolongation of the Norwegian Caledonides. Geophys J Int 184:1147–1166. doi:10.1111/j.1365-246X.2010.04888.x

    Article  Google Scholar 

  • Bauer K, Trumbull RB, Vietor T (2003) Geophysical images and a crustal model of intrusive structures beneath the Messum ring complex, Namibia. Earth Planet Sci Lett 216:65–80. doi:10.1016/S0012-821X(03)00486-2

    Article  Google Scholar 

  • Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35:307–310

    Article  Google Scholar 

  • Bown JW, White RS (1994) Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet Sci Lett 121:435–449

    Article  Google Scholar 

  • Breivik AJ, Faleide JI, Gudlaugsson ST (1998) Southwestern Barents Sea margin: late Mesozoic sedimentary basins and crustal extension. Tectonophysics 293:21–44

    Article  Google Scholar 

  • Breivik AJ, Verhoef J, Faleide JI (1999) Effect of thermal contrasts on gravity modeling at passive margins: results from the western Barents Sea. J Geophys Res 104:15293–15311

    Article  Google Scholar 

  • Breivik AJ, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y (2003) Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data. Tectonophysics 369:37–70. doi:10.1016/S0040-1951(03)00131-8

    Article  Google Scholar 

  • Breivik AJ, Mjelde R, Grogan P, Shimamura H, Murai Y, Nishimura Y (2005) Caledonide development offshore-onshore Svalbard based on ocean bottom seismometer, conventional seismic, and potential field data. Tectonophysics 401:79–117. doi:10.1016/j.tecto.2005.03.009

    Article  Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • Clark SA, Faleide JI, Ritzmann O, Mjelde R (2009) Multi-stage rift evolution of the SW Barents Sea from wide-angle seismic velocity modeling. Geophys Res Abs 11:12599

    Google Scholar 

  • Czuba W, Grad M, Mjelde R, Guterch A, Libak A, Krüger F, Murai Y, Schweitzer J, The IPY Project Group (2011) Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea. Geophys J Int 184:541–554. doi: 10.1111/j.1365-246X.2010.04873.x

    Google Scholar 

  • Dimakis P, Braathen BI, Faleide JI, Elverhøi A, Gudlaugsson ST (1998) Cenozoic erosion and the preglacial uplift of the Svalbard-Barents Sea region. Tectonophysics 300:311–327

    Article  Google Scholar 

  • Døssing A, Dahl-Jensen T, Thybo H, Mjelde R, Nishimura Y (2008) East Greenland Ridge in the North Atlantic Ocean: an integrated geophysical study of a continental sliver in a boundary transform setting. J Geophys Res 113:B10107. doi:10.1029/2007JB005536

    Article  Google Scholar 

  • Eidvin T, Goll RM, Grogan P, Smelror M, Ulleberg K (1998) The Pleistocene to Middle Eocene stratigraphy and geological evolution of the western Barents Sea continental margin at well site 7316/5-1 (Bjørnøya West area). Norwegian J Geol 78:99–123

    Google Scholar 

  • Eldholm O, Faleide JI, Myhre AM (1987) Continent-ocean transition at the western Barents Sea/Svalbard continietal margin. Geology 15:1118–1122

    Article  Google Scholar 

  • Eldholm O, Sundvor E, Vogt PR, Hjelstuen BO, Crane K, Nilsen AK, Gladczenko TP (1999) SW Barents Sea continental margin heat flow and Håkon Mosby Mud Volcano. Geo-Marine Lett 19:29–37

    Article  Google Scholar 

  • Engen Ø, Faleide JI, Dyreng TK (2008) Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450:51–69. doi:10.1016/j.tecto.2008.01.002

    Article  Google Scholar 

  • Faleide JI, Myhre AM, Eldholm O (1988) Early Tertiary volcanism at the western Barents Sea margin. In: Morton AC, Parson LM (eds) Early tertiary volcanism and the opening of the NE Atlantic. Geol Soc Special Publication 39, pp 135–146

  • Faleide JI, Gudlaugsson ST, Eldholm O, Myhre AM, Jackson HR (1991) Deep seismic transects across the sheared western Barents Sea-Svalbard continental margin. Tectonophysics 189:73–89

    Article  Google Scholar 

  • Faleide JI, Vågnes E, Gudlaugsson ST (1993) Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Mar Pet Geol 10:186–214

    Article  Google Scholar 

  • Faleide JI, Solheim A, Fiedler A, Hjelstuen BO, Andersen ES, Vanneste K (1996) Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin. Global Planet Change 12:53–74

    Article  Google Scholar 

  • Faleide JI, Tsikalas F, Breivik AJ, Mjelde R, Ritzmann O, Engen Ø, Wilson J, Eldholm O (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31:82–91

    Google Scholar 

  • Fiedler A, Faleide JI (1996) Cenozoic sedimentation along the southwestern Barents Sea margin in relation to uplift and erosion of the shelf. Global Planet Change 12:75–93

    Article  Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian continental shelf. Part I: the Barents Sea Region. NPD-Bulletin 6:1–33

    Google Scholar 

  • Håkansson E, Pedersen SAC (2001) The Wandel Hav Strike-Slip Mobile Belt—a Mesozoic plate boundary in North Greenland. Bull Geol Soc Denmark 48:149–158

    Google Scholar 

  • Hinz K, Eldholm O, Block M, Skogseid J (1993) Evolution of North Atlantic volcanic continental margins. In: Parker JR (ed) Petroleum geology of Northwest Europe: proceedings of the 4th conference. The Geological Soc, London, pp 901–913

  • Hjelstuen BO, Elverhøi A, Faleide JI (1996) Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Global Planet Change 12:95–117

    Article  Google Scholar 

  • Jackson HR, Faleide JI, Eldholm O (1990) Crustal structure of the Sheared Southwestern Barents Sea Continental Margin. Mar Geol 93:119–146

    Article  Google Scholar 

  • Jakobsson M, Backman J, Rudels B, Nycander J, Frank M, Mayer L, Jokat W, Sangiorgi F, O’Regan M, Brinkhuis H, King J, Moran K (2007) The early miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447:986–990. doi:10.1038/nature05924

    Article  Google Scholar 

  • Jakobsson M, Macnab R, Mayer L, Anderson R, Edwards M, Hatzky J, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. doi:10.1029/2008GL033520

    Article  Google Scholar 

  • Jebsen C (1998) Kenozoisk utvikling av Vestbakkvulkanittprovinsen på den vestlige Barentshavsmarginen. Cand. Scient. Thesis, University of Oslo

  • Kandilarov A, Landa H, Mjelde R, Pedersen RB, Okino K, Murai Y (2010) Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center. Mar Geophys Res 31:173–195. doi:10.1007/s11001-010-9095-8

    Article  Google Scholar 

  • Klingelhöfer F, Géli L, Matias L, Steinsland N, Mohr J (2000) Crustal structure of a super-slow spreading centre: a seismic refraction study of Mohns Ridge, 72°N. Geophys J Int 141:509–526

    Article  Google Scholar 

  • Knutsen SM, Larsen KI (1997) The late Mesozoic and Cenozoic evolution of the Sørvestsnaget Basin: a tectonostratigraphic mirror for regional events along the Southwestern Barents Sea Margin? Mar Pet Geol 14:27–54

    Article  Google Scholar 

  • Korenaga J, Holbrook WS, Kent GM, Kelemen PB, Detrick RS, Larsen HC, Hopper JR, Dahl-Jensen T (2000) Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J Geophys Res 105:21591–21614

    Article  Google Scholar 

  • Libak A, Eide CH, Mjelde R, Keers H, Flüh E (2012) From pull-apart basins to ultraslow spreading: results from the western Barents Sea margin. Tectonophysics 514–517:44–61

    Article  Google Scholar 

  • Lorenzo JM (1997) Sheared continent-ocean margins: an overview. Geo-Marine Lett 17:1–3

    Article  Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007) National geophysical data center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8:Q06017. doi:10.1029/2007GC001643

    Article  Google Scholar 

  • Minakov A (2011) Structure and evolution of the northern Barents Sea-Lomonosov Ridge margins from a multidisciplinary geophysical approach. Dissertation, University of Bergen

  • Minshull TA (2009) Geophysical characterization of ocean-continent transition at magma-poor rifted margins. C R Geosci 341:382–393. doi:10.1016/j.crte.2008.09.003

    Article  Google Scholar 

  • Minshull TA, Muller MR, Robinson CJ, White RS, Bickle MJ (1998) Is the oceanic Moho a serpentinization front? In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. Geological Society, London, Special Publications 148, pp 71–80

  • Minshull TA, Muller MR, White RS (2006) Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophys J Int 166:135–147. doi:10.1111/j.1365-246X.2006.03001.x

    Article  Google Scholar 

  • Mjelde R, Faleide JI (2009) Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes? Mar Geophys Res 30:61–72

    Article  Google Scholar 

  • Mjelde R, Breivik AJ, Elstad H, Ryseth AE, Skilbrei JR, Opsal JG, Shimamura H, Murai Y, Nishimura Y (2002) Geological development of the Sørvestnaget Basin, SW Barents Sea, from ocean bottom seismic, surface seismic and potential field data. Norwegian J Geol 82:183–202

    Google Scholar 

  • Mjelde R, Breivik AJ, Raum T, Mittelstaedt E, Ito G, Faleide JI (2008) Magmatic and tectonic evolution of the North Atlantic. J Geol Soc 165:31–42

    Article  Google Scholar 

  • Myhre AM, Eldholm O, Sundvor E (1982) The margin between Senja and Spitsbergen fracture zones: implications from plate tectonics. Tectonophysics 89:33–50

    Article  Google Scholar 

  • Parkin CJ, Lunnon ZC, White RS, Christie PAF, iSIMM Team (2007) Imaging the pulsing Iceland mantle plume through the Eocene. Geology 35:93–96

    Article  Google Scholar 

  • Richardsen G, Henriksen E, Vorren TO (1991) Evolution of the Cenozoic sedimentary wedge during rifting and sea-floor spreading west of the Stappen High, western Barents Sea. Mar Geol 101:11–30

    Article  Google Scholar 

  • Ritzmann O, Faleide JI (2007) Caledonian basement of the western Barents Sea. Tectonics 26:TC5014. doi: 10.1029/2006TC002059

  • Ryseth A, Augustson JH, Charnock M, Haugerud O, Knutsen S-M, Midtbøe PS, Opsal JG, Sundsbø G (2003) Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norwegian J Geol 83:107–130

    Google Scholar 

  • Sættem J, Bugge T, Fanavoll S, Goll RM, Mørk A, Mørk MBE, Smelror M, Verdenius JG (1994) Cenozoic margin development and erosion of the Barents Sea: core evidence from southwest of Bjørnøya. Mar Geol 118:257–281

    Article  Google Scholar 

  • Scott CL, Shillington DJ, Minshull TA, Edwards RA, Brown PJ, White NJ (2009) Wide-angle seismic data reveal extensive overspressures in the Eastern Black Sea Basin. Geophys J Int 178:1145–1163. doi:10.1111/j.1365-246X.2009.04215.x

    Article  Google Scholar 

  • Scrutton RA (1979) On sheared passive continental margins. Tectonophysics 59:293–305

    Article  Google Scholar 

  • Smith MP (2000) Cambro-Ordovician stratigraphy of Bjørnøya and North Greenland: constraints on tectonic models for the Arctic Caledonides and the Tertiary opening of the Greenland Sea. J Geol Soc 157:459–470

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97:19683–19715

    Article  Google Scholar 

  • Worsley D, Agdestein T, Gjelberg JG, Kirkemo K, Mørk A, Nilsson I, Olaussen S, Steel RJ, Stemmerik L (2001) The geological evolution of Bjørnøya, Arctic Norway: implications for the Barents Shelf. Norwegian J Geol 81:195–234

    Google Scholar 

  • Zelt CA (1999) Modelling strategies and model assessment for wide-angle seimic traveltime data. Geophys J Int 139:183–204

    Article  Google Scholar 

  • Zelt CA, Barton PJ (1998) Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin. J Geophys Res 103:7187–7210

    Article  Google Scholar 

  • Zelt CA, Forsyth DA (1994) Modeling wide-angle seismic data for crustal structure: southeastern Grenville Province. J Geophys Res 99:11687–11704

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zhang J, Toksöz MN (1998) Nonlinear refraction traveltime tomography. Geophysics 63:1726–1737

    Google Scholar 

Download references

Acknowledgments

This work was financed by Vista, the research cooperation between Statoil and The Norwegian Academy of Science and Letters, project number 6253. Data acquisition was funded by the Research Council of Norway as a part of the IPY project “The Dynamic Continental Margin Between the Mid-Atlantic-Ridge System (Mohns Ridge, Knipovich Ridge) and the Bear Island Region” lead by Johannes Schweitzer (NORSAR). We would like to thank the captain and crew on R/V Håkon Mosby. Participants from Hokkaido University are acknowledged for their effort during acquisition and processing of OBS data. Ole Meyer, Helge Johnsen, Aleksander Kandilarov and Alexander Minakov from University of Bergen and Stephen A. Clark from University of Oslo are thanked for their contribution during OBS acquisition. Our Polish colleagues from Polish Academy of Sciences and University of Warsaw fired the TNT shots and acquired the Texan land station data on Bear Island. The group from University of Potsdam acquired the broadband land data on Bear Island and Alfred Wegener Institute was responsible for the broadband OBS data. Arne Gidskehaug processed the gravity data. Comments from Atle Austegard, Berit Hjelstuen, Christian Eide and Trond Kvarven improved the paper. GMT (Wessel and Smith 1998) was used to create many of the figures. Finally we thank the editor, Shu-Kun Hsu, together with Bob White and an anonymous reviewer for constructive feedback on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audun Libak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libak, A., Mjelde, R., Keers, H. et al. An integrated geophysical study of Vestbakken Volcanic Province, western Barents Sea continental margin, and adjacent oceanic crust. Mar Geophys Res 33, 185–207 (2012). https://doi.org/10.1007/s11001-012-9155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-012-9155-3

Keywords

Navigation