Skip to main content
Log in

Companion theorems to G. Szegö’s inequality for pairs of coefficients of bounded polynomials

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We consider real univariate polynomials \(P_n\) of degree \( \le n \) from class

$$\begin{aligned} \mathbf {C}_n = \{P_n:|P_n \left( \cos \displaystyle \frac{(n -i)\pi }{n}\right) |\le 1 \; \text{ for }\; 0\le i\le n \} \end{aligned}$$

which encompasses the unit ball of polynomials with respect to the uniform norm on \([- 1, 1]\). For pairs of consecutive coefficients of \( P_n(x) = \sum \nolimits _{k=0}^{n}a_kx^k\) there holds the inequality

$$\begin{aligned} |a_{k-1}|+|a_k|\le |t_{n,k}|, \quad \text{ if }\; k\equiv n\; \text{ mod }\; 2, \end{aligned}$$
(1)

where \(T_n(x)=\sum \nolimits _{k=0}^{n} t_{n,k}x^k\) is the \(n\)-th Chebyshev polynomial of the first kind. (1) implies Markov’s classical coefficient inequality of 1892 (Math. Ann. 77:213–258, 1916, p. 248) and goes back to Szegö, but was made public by P. Erdös (Bull. Am. Math. Soc. 53:1169–1176, 1947, p. 1176) in 1947. We ask here: will the (nonzero) coefficients of \(T_n\) likewise majorize complementary pairs \(|a_k| + |a_{k+1}|\)? More generally: does there hold

$$\begin{aligned} |a_k| + |a_j| \le |t_{n,k}| \quad \text{ for } \text{ all }\; P_n \in \mathbf {C_n}, \end{aligned}$$
(2)

\(\text{ where }\; k < j \;\text{ and }\; k\equiv n\mod 2\;\text{ but }\; j\not \equiv n\mod 2 ?\) We treat the marginal cases \(n < 12\) separately, and for \(n \ge 12\) we provide answers to this question with the aid of the explicitly determined optimal bound \(K \sim \lceil \frac{n}{\sqrt{2}}\rceil \) which incorporates the height and the length of \( \frac{T'_n(x)}{n}\). Theorem 2.1: (2) holds, provided \(K \le k < j\); in particular, provided \(\frac{n}{\sqrt{2}}<k<j\). As a corollary we reveal new extremal properties of the leading coefficients of \(\pm T_n\). Theorem 2.4: (2) does not hold if \(k < j < K\). Theorem 2.5: If \(k < K < j\), then (2) holds for certain, but not for all, \(k\) and \(j\). If we keep fixed \(j = n-1> K\), then (2) holds for all \(k\) with \(k_{*}\le k < j\), where the bound \(k_{*} < K\) is explicitly determined, and is optimal for \(n\le 43\). In Theorem 2.6 we return to G. Szegö’s original inequality (1) and constructively prove the non - uniqueness of its extremizer \(\pm T_n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, vol. 161 (Springer, New York, 1995)

    Book  Google Scholar 

  2. L. Brickman, Q.I. Rahman, S. Ruscheweyh, On pairs of coefficients of bounded polynomials. Proc. Am. Math. Soc. 92, 533–537 (1984)

    Google Scholar 

  3. P.L. Chebyshev, Théorie des mécanismes connus sous le nom de parallélogrammes. Mem. Acad. Sci. St. Petersburg 7 (1854), 539–568; see also www.math.technion.ac.il/hat/fpapers/cheb11.pdf

  4. D.P. Dryanov, M.A. Qazi, Q.I. Rahman, Certain extremal problems for polynomials. Proc. Am. Math. Soc. 131, 2741–2751 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Erdös, Some remarks on polynomials. Bull. Am. Math. Soc. 53, 1169–1176 (1947)

    Article  MATH  Google Scholar 

  6. V.L. Goncharov, The theory of best approximation of functions. J. Approx. Theory 106, 2–57 (2000) (Russian original 1945); see also http://www.math.technion.ac.il/hat/fpapers/gon.pdf

  7. G. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge Mathematical Library, Cambridge, UK, 1952)

    MATH  Google Scholar 

  8. A.N. Kolmogorov, A.P. Yushkevich (eds.), Mathematics of the 19th Century, vol. 3. (Birkhäuser, Basel, 1998) (Russian Original 1987).

  9. V. Levin, Über die Koeffizientensummen einiger Klassen von Potenzreihen. Math. Z. 38, 565–590 (1934)

    Article  MathSciNet  Google Scholar 

  10. W. Markoff, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen. Math. Ann. 77, 213–258 (1916) (Russian Original 1892); see also www.math.technion.ac.il/hat/fpapers/vmar.pdf

  11. J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, Boca Raton, 2002)

    Book  Google Scholar 

  12. G.V. Milovanovic̀, D.S. Mitrinovic̀, T.M. Rassias, Topics in Polynomials-Extremal Problems, Inequalities, Zeros (World Scientific, Singapore, 1994)

  13. O.J. Munch, Om nogle uligheder af W.A. Markoff, Nordisk Mat. Tidskr. 8), 21–29 (1960); 63–64

  14. I.P. Natanson, Constructive Function Theory, vol. I (Uniform Approximation. F. Ungar Publ., New York, 1964). (Russian Original 1949)

  15. D.J. Newman, Polynomials with large partial sums. J. Approx. Theory 23, 187–190 (1978); Erratum. J. Approx. Theory 26), 194 (1979)

    Google Scholar 

  16. N.N. Osipov, N.S. Sazhin, An extremal property of Chebyshev polynomials. Russ. J. Numer. Math. Model. 23, 89–95 (2008)

    MATH  MathSciNet  Google Scholar 

  17. S. Paszkowski, Zastosowania Numeryczne Wielomianow i Szeregow Czebyszewa (PWN, Warsaw, 1975)

    MATH  Google Scholar 

  18. R. Pierre, Q.I. Rahman, On a problem of Turán about polynomials II. Can. J. Math. 33, 701–733 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. H.-J. Rack, On V.A. Markov’s and G. Szegö’s inequality for the coefficients of polynomials in one and several variables. East J. Approx. 14, 319–352 (2008)

    Google Scholar 

  20. H.-J. Rack, On the length and height of Chebyshev polynomials in one and two variables. East J. Approx. 16, 35–91 (2010)

    MathSciNet  Google Scholar 

  21. H.-J. Rack, On an extremal property of the Chebyshev polynomials: maximizing pairs of coefficients of bounded polynomials, in Constructive Theory of Functions, Proc. Conference Sozopol 2010, ed. by G. Nikolov, R. Uluchev (Prof. Marin Drinov Academic Publishing House, Sofia, 2012), pp. 286–317

    Google Scholar 

  22. Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials (Oxford Science Publications (GB), London Mathematical Society Monographs New Series, 26, 2002)

  23. T.J. Rivlin, Chebyshev Polynomials-From Approximation Theory to Algebra and Number Theory, 2nd edn. (Wiley, New York, 1990)

  24. W.W. Rogosinski, Some elementary inequalities for polynomials. Math. Gaz. 39, 7–12 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Schönhage, Approximationstheorie (Walter de Gruyter, Berlin, 1971)

    Book  MATH  Google Scholar 

  26. J.A. Shohat, On some properties of polynomials. Math. Z. 29, 684–695 (1929)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Joachim Rack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rack, HJ. Companion theorems to G. Szegö’s inequality for pairs of coefficients of bounded polynomials. Period Math Hung 68, 54–76 (2014). https://doi.org/10.1007/s10998-014-0019-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0019-2

Keywords

Mathematics Subject Classification

Navigation