Skip to main content
Log in

Order-Dual Relational Semantics for Non-distributive Propositional Logics: A General Framework

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The contribution of this paper lies with providing a systematically specified and intuitive interpretation pattern and delineating a class of relational structures (frames) and models providing a natural interpretation of logical operators on an underlying propositional calculus of Positive Lattice Logic (the logic of bounded lattices) and subsequently proving a generic completeness theorem for the related class of logics, sometimes collectively referred to as (non-distributive) Generalized Galois Logics (GGL’s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A.R., & Belnap, N. (1975). Entailment: the logic of relevance and necessity (Vol. I). Princeton: Princeton University Press.

    Google Scholar 

  2. Anderson, A.R., Belnap, N., & Dunn, J.M. (1992). Entailment: the logic of relevance and necessity (Vol. II). Princeton: Princeton University Press.

    Google Scholar 

  3. Bierman, G., & de Paiva, V. (2000). On an intuitionistic modal logic. Studia Logica, 65, 383–416.

    Article  Google Scholar 

  4. Bimbó, K., & Dunn, J.M. (2008). Generalized Galois Logics. Relational semantics of nonclassical logical calculi. CSLI lecture notes (Vol. 188). Stanford: CSLI.

    Google Scholar 

  5. Birkhoff, G. (1979). Lattice theory, Corrected reprint of the 1967 third edition American Mathematical Society Colloquium Publications 25. Providence: American Mathematical Society.

    Google Scholar 

  6. Blackburn, P., de Rïke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science 53, CUP.

  7. Celani, S. (2001). Remarks on intuitionistic modal logics. Divulgaciones Mathemáticas, 2, 137–147.

    Google Scholar 

  8. Chernilovskaya, A., Gehrke, M., & van Rooijen, L. (2012). Generalised Kripke semantics for the Lambek–Grishin calculus. Logic Journal of the IGPL, 20 (6), 1110–1132.

    Article  Google Scholar 

  9. Conradie, W., & Palmigiano, A. (2015). Algorithmic correspondence and canonicity for non-distributive logics, unpublished manuscript, privately communicated.

  10. Craig, A.P.K., Haviar, M., & Priestley, H.A. (2013). A fresh perspective on canonical extensions for bounded lattices. Applied Categorical Structures, 21-6, 725–749. Springer Netherlands.

    Article  Google Scholar 

  11. Craig, A., Gouveia, M.J., & Haviar, M. (2015). TiRS graphs and TiRS frames: a new setting for duals of canonical extensions. Algerba Universalis, 74(123–138).

  12. Došen, K. (1999). Negation in the light of modal logic. In D. Gabbay, & H. Wansing (Eds.), What is negation, (pp. 77–86). Norwell: Kluwer.

  13. Došen, K. (1986). Negation as a modal operator. Reports on Mathematical Logic, 20, 15–27.

    Google Scholar 

  14. Dunn, J.M., & Zhou, C. (2005). Negation in the context of gaggle theory. Studia Logica, 80, 235–264.

    Article  Google Scholar 

  15. Dunn, J.M. (1990). Gaggle theory: an abstraction of galois connections and resuduation with applications to negations and various logical operations. In Logics in AI, Proceedings of European Workshop JELIA 1990, LNCS 478, Berlin (pp. 31–51).

  16. Dunn, J.M. (1993). Star and perp: two treatments of negation In J. Tomberlin (Ed.), Philosophical Perspectives (Vol. 7, pp. 331–357).

  17. Düntsch, I., Orlowska, E., Radzikowska, A.M., & Vakarelov, D. (2004). Relational representation theorems for some lattice-based structures. The Journal of Relational Methods in Computer Science, 1, 132–160.

    Google Scholar 

  18. Fitting, M.C., & Mendelsohn, R.L. (1998). First-order modal logic. Synthése Library (Vol. 277). Norwell: Kluwer.

    Book  Google Scholar 

  19. Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: an algebraic glimpse at substructural logics. Amsterdam: Elsevier.

    Google Scholar 

  20. Galatos, N. (2004). Minimal varieties of residuated lattices. Algebra Universalis, 52, 215–239.

    Article  Google Scholar 

  21. Galatos, N., & Jipsen, P. (2013). Residuated Frames with applications to decidability. Transactions of the American Society, 365(3), 1219–1249.

    Article  Google Scholar 

  22. Gehrke, M., & Harding, J. (2001). Bounded lattice expansions. Journal of Algebra, 238, 345–371.

    Article  Google Scholar 

  23. Gehrke, M. (2006). Generalized Kripke frames. Studia Logica, 84(2), 241–275.

    Article  Google Scholar 

  24. Ghani, N., de Paiva, V., & Ritter, E. (1998). Explicit substitutions for constructuve necessity. In Proc. ICALP’98, LNCS 1443.

  25. Goldblatt, R. (1974). Semantic analysis of orthologic. Journal of Philosophical Logic, 3, 19–35.

    Article  Google Scholar 

  26. Hartonas, C. (1996). Order-duality, negation and lattice representation In H. Wansing (Ed.), Negation: a notion in focus, (pp. 27–36) . de Gruyter.

  27. Hartonas, C., & Dunn, J.M. (1997). Stone duality for lattices. Algebra Universalis, 37, 391–401.

    Article  Google Scholar 

  28. Hartonas, C. (1997). Duality for lattice-ordered algebras and for normal algebraizable logics. Studia Logica, 58, 403–450.

    Article  Google Scholar 

  29. Hartonas, C. (2016). Reasoning with incomplete information in generalized Galois logics without distribution: the case of negation and modal operators In K. Bimbó (Ed.), J. Michael Dunn on information based logics. Springer-Verlag series outstanding contributions to logic (pp. 303– 336).

  30. Hartonas, C. (2016). Modal and temporal extensions of non-distributive propositional logics. Oxford Logic Journal of the IGPL, 24(2), 156–185.

    Article  Google Scholar 

  31. Hartonas, C. (2016). First-order frames for orthomodular quantum logic. Journal of Applied Non-Classical Logics, 26(1), 69–80.

    Article  Google Scholar 

  32. Hartonas, C. (2016). Order-dual relational semantics for non-distributive ropositional logics. Oxford Logic Journal of the IGPL, in print.

  33. Jónsson, B., & Tarski, A. (1952). Boolean algebras with operators I, II. American Journal of Mathematics, 73(1), 891–939. 74(1):127–162.

    Google Scholar 

  34. Kripke, S. (1959). A completeness theorem in modal logic. Journal of Symbolic Logic, 24, 1–14.

    Article  Google Scholar 

  35. Kripke, S. (1963). Semantic analysis of modal logic I, normal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9, 67–96.

    Article  Google Scholar 

  36. Kripke, S. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica, 16, 83– 94.

    Google Scholar 

  37. Ono, H., & Komori, Y. (1985). Logics without the contraction rule. The Journal of Symbolic Logic, 50, 169–201.

    Article  Google Scholar 

  38. Ono, H. (1990). Structural rules and a logical hierarchy In P.P. Petkov (Ed.), Mathematical logic, Proceedings of the summer schools and conference on mathematical logic, Heyting ’88, Bulgaria, (pp. 95–104). New York: Plenum Press.

  39. Ono, H. (1992). Algebraic aspects of logics without structural rules. AMS, Contemporary Mathematics, 131, 601–621.

    Article  Google Scholar 

  40. Ono, H. (1977). On some intuitionistic modal logics. Publ. RIMS, Kyoto University, 13, 687–722.

    Article  Google Scholar 

  41. Priestley, H.A. (1970). Representation of distributive lattices by means of ordered stone spaces. Bulletin of the London Mathematical Society, 2, 186–90.

    Article  Google Scholar 

  42. Seki, T. (2009). Completeness of relevant modal logics with disjunctive rules. Reports on Mathematical Logic, 44, 3–18.

    Google Scholar 

  43. Simpson, A. (1994). The proof theory and semantics of intuitionistic modal logic. PhD Thesis, Edinburgh.

  44. Stone, M.H. (1937). Topological representation of distributive lattices and Brouwerian logics. Casopsis pro Pestovani Matematiky a Fysiky, 67, 1–25.

    Google Scholar 

  45. Suzuki, T. (2010). Bi-approximation semantics for substructural logic at work. Advances in Modal Logic, 8, 411–433.

    Google Scholar 

  46. Thopmason, S.K. (1972). Semantic analysis of tense logics. The Journal of Symbolic Logic, 37-1, 150–158.

    Article  Google Scholar 

  47. Urquhart, A. (1978). A topological representation of lattices. Algebra Universalis, 8, 45–58.

    Article  Google Scholar 

  48. Vakarelov, D. (1977). Theory of negation in certain logical systems: algebraic and semantic approach. Ph. D Dissertation, Uniwersytet Warszawski.

Download references

Acknowledgments

I wish to sincerely thank the anonymous referees for their comments and recommendations that helped improve the clarity and presentation of this article.

While this article was under review, applications and further clarification of the framework were pursued in two sequel papers, currently under review:

While this article was under review, applications and further clarification of the framework was pursued by this author in a sequel paper Kripke-Galois Semantics for Substructural Logics (2016), currently under review, treating a variety of logical systems, from the Full Lambek and Lambek-Grishin calculi to Modal, Linear and Relevance Logic (without distribution). Other than adopting ‘Kripke-Galois semantics’ in place of the ‘order-dual semantics’ used in the present article and in [32], this follow up paper puts the framework to test by successfully applying it to the familiar logical systems mentioned above. These concrete applications will probably be of help in elucidating the approach and the techniques used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysafis Hartonas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartonas, C. Order-Dual Relational Semantics for Non-distributive Propositional Logics: A General Framework. J Philos Logic 47, 67–94 (2018). https://doi.org/10.1007/s10992-016-9417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-016-9417-7

Keywords

Navigation