Skip to main content

Advertisement

Log in

Semax-Induced Changes in Growth Factor mRNA Levels in the Rat Brain on the Third Day After Ischemia

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The peptide Semax effectively protects brain tissues against ischemic stroke. However, the molecular mechanisms that underlie its action remain unknown. We used the focal cerebral ischemia rat model with permanent middle cerebral artery occlusion (pMCAO). During the experiments, animals were given intraperitoneal injections of Semax, Pro-Gly-Pro, or saline. We studied the effect of the peptides on the expression of more than 80 growth factor genes in the cortex. As a response to Semax administration, alterations in the expression of growth factor genes were detected at 3, 24, and 72 h after pMCAO. The most pronounced effects of Semax, i.e., the downregulation of the transcripts of 20 genes and the upregulation of 12 growth factor genes, were observed 3 days after artery occlusion. According to our data, Semax promoted the upregulation (by ≥10-fold) of the Csf3 and Artn genes, as well as of the cytokine genes Il1b and Il6. The peptide products of these genes have regulatory properties and exert neuroprotective effects in injured brain tissues. We presume that Semax triggers neuroprotective mechanisms by affecting these systems via the regulation of the expression of growth factor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

PGP:

Tripeptide Pro-Gly-Pro

MCA:

Middle cerebral artery

pMCAO:

Permanent left middle cerebral artery occlusion

CNS:

Central nervous system

VEGF:

Vascular endothelial growth factor

PCR:

Polymerase chain reaction

REST:

Relative expression software tool

Th1 and Th2:

Type 1 and 2 helper T-cells

References

  • Allan SM, Pinteaux E (2003) The interleukin-1 system: an attractive and viable therapeutic target in neurodegenerative disease. Curr Drug Targets CNS Neurol Disord 2(5):293–302

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer C, Werner S (2002) Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 513:335–351

    Article  CAS  PubMed  Google Scholar 

  • Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • Argaw A. T D, Zhang Y G, Bernardi G, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol (Baltim, Md.: 1950) 177(8):5574–5584

    Article  Google Scholar 

  • Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  • Auernhammer CJ (2000) Leukemia-inhibitory factor-neuroimmune modulator of endocrine function. Endocr Rev 21(3):313–345. doi:10.1210/er.21.3.313

    CAS  PubMed  Google Scholar 

  • Badmaeva SE, Kopylova GN, Abushinova NN, Samonina GE, Umarova BA (2006) Effects of glyprolines on stress-induced behavioral disorders in rats. Neurosci Behav Physiol 36(4):409–413. doi:10.1007/s11055-006-0032-x

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21(6):1291–1302

    Article  CAS  PubMed  Google Scholar 

  • Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21(15):5528–5534

    CAS  PubMed  Google Scholar 

  • Braeuninger S, Kleinschnitz C, Stoll G (2010) Interleukin-18 does not influence infarct volume or functional outcome in the early stage after transient focal brain ischemia in mice. Exp Transl Stroke Med 2:1. doi:10.1186/2040-7378-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson NG, Wieggel WA, Chen J, Bacchi A, Rogers SW, Gahring LC (1999) Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. J Immunol (Baltimore, Md: 1950) 163(7):3963–3968

    CAS  Google Scholar 

  • Caso JR, Moro MA, Lorenzo P, Lizasoain I, Leza JC (2007) Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol 17(9):600–607. doi:10.1016/j.euroneuro.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Rossi S, Tortiglione A, Picconi B, Prosperetti C, De Chiara V, Bernardi G, Calabresi P (2007) Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol Dis 27(1):44–53. doi:10.1016/j.nbd.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  • Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD (1986) A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17(4):738–743

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  • Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31(7):1715–1720

    Article  CAS  PubMed  Google Scholar 

  • De Wied D (1997) Neuropeptides in learning and memory processes. Behav Brain Res 83(1–2):83–90

    Article  PubMed  Google Scholar 

  • Diehl S, Rincón M (2002) The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol 39(9):531–536

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva VG, Torshina EV, Yuzhakov VV, Povarova OV, Skvortsova VI, Limborska SA, Dergunova LV (2008) Expression of sphingomyelin synthase 1 gene in rat brain focal ischemia. Brain Res 1188:222–227. doi:10.1016/j.brainres.2007.10.056

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva VG, Povarova OV, Skvortsova VI, Limborska SA, Myasoedov NF, Dergunova LV (2010) Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia. Cell Mol Neurobiol 30(1):71–79. doi:10.1007/s10571-009-9432-0

    Article  CAS  PubMed  Google Scholar 

  • Dolotov OV, Karpenko EA, Seredenina TS, Inozemtseva LS, Levitskaya NG, Zolotarev YA, Kamensky AA, Grivennikov IA, Engele J, Myasoedov NF (2006) Semax, an analogue of adrenocorticotropin (4-10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain. J Neurochem 97(1):82–86. doi:10.1111/j.1471-4159.2006.03658.x

    Article  CAS  PubMed  Google Scholar 

  • Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87(1):179–197. doi:10.1016/j.pbb.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  • England TJ, Gibson CL, Bath PMW (2009) Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review. Brain Res Rev 62(1):71–82. doi:10.1016/j.brainresrev.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  • Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6(10):e26317. doi:10.1371/journal.pone.0026317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogal B, Hewett JA, Hewett SJ (2005) Interleukin-1beta potentiates neuronal injury in a variety of injury models involving energy deprivation. J Neuroimmunol 161(1–2):93–100. doi:10.1016/j.jneuroim.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  • Font MA, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev 6(3):238–244. doi:10.2174/157340310791658802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guk KD, Kuprash DV (2011) Interleukin-11, an IL-6 like cytokine. Mol Biol 45(1):44–55

    CAS  Google Scholar 

  • Hedtjärn M, Leverin A-L, Eriksson K, Blomgren K, Mallard C, Hagberg H (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22(14):5910–5919

    PubMed  Google Scholar 

  • Huang Z-B, Sheng G-Q (2010) Interleukin-1β with learning and memory. Neurosci Bull 26(6):455–468. doi:10.1007/s12264-010-6023-5

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X (2011) Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172:398–405. doi:10.1016/j.neuroscience.2010.10.054

    Article  CAS  PubMed  Google Scholar 

  • John GR, Chen L, Rivieccio MA, Melendez-Vasquez CV, Hartley A, Brosnan CF (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-rock axis. J Neurosci 24(11):2837–2845. doi:10.1523/JNEUROSCI.4789-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Johnsen SP, Hundborg HH, Sørensen HT, Orskov H, Tjønneland A, Overvad K, Jørgensen JOL (2005) Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 90(11):5937–5941. doi:10.1210/jc.2004-2088

    Article  CAS  PubMed  Google Scholar 

  • Kaplan AI, Koshelev VB, Nezavibat’ko VN, Ashmarin IP (1992) Increased resistance to hypoxia effected by the neuropeptide preparation SEMAX. Fiziol Cheloveka 18(5):104–107

    CAS  PubMed  Google Scholar 

  • Kopylova GN, Bakaeva ZV, Badmaeva SE, Umarova BA, Samonina GE, Guseva AA (2007) Therapeutic effects of glyprolines (PGP, GP, and PG) in rats with stress-induced behavioral disorders. Bull Exp Biol Med 143(2):167–170

    Article  CAS  PubMed  Google Scholar 

  • Lampron A, Pimentel-Coelho PM, Rivest S (2013) Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration. J Comp Neurol 521(17):3863–3876. doi:10.1002/cne.23363

    Article  CAS  PubMed  Google Scholar 

  • Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A (2011) Growth factors in ischemic stroke. J Cell Mol Med 15(8):1645–1687. doi:10.1111/j.1582-4934.2009.00987.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    CAS  PubMed  Google Scholar 

  • Liu S, Levine S, Winn H (2010) Targeting ischemic penumbra Part I: from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med 3(1):47–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Loddick SA, Turnbull AV, Rothwell NJ (1998) Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18(2):176–179. doi:10.1097/00004647-199802000-00008

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Naeasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210(1):157–172. doi:10.1084/jem.20120412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maćkowiak M, Chocyk A, Markowicz-Kula K (2004) Review neurogenesis in the adult brain 1. Pol J Pharmacol 56(6):673–687

    PubMed  Google Scholar 

  • Martynova KV, Andreeva LA, Klimova PA, Kirillova IG, Shevchenko VP, Nagaev II, Shram SI, Shvets VI, Miasoedov NF (2009) Structural-functional study of glycine-and-proline-containing peptides (glyprolines) as potential neuroprotectors. Bioorg Khim 35(2):165–171

    CAS  PubMed  Google Scholar 

  • Maulik N, Thirunavukkarasu M (2008) Growth factors and cell therapy in myocardial regeneration. J Mol Cell Cardiol 44(2):219–227. doi:10.1016/j.yjmcc.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  • Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV (2012) Effect of Semax and its C-terminal fragment Pro-Gly-Pro on the expression of VEGF family genes and their receptors in experimental focal ischemia of the rat brain. J Mol Neurosci 49(2):328–333. doi:10.1007/s12031-012-9853-y

    Article  PubMed  Google Scholar 

  • Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV (2014) The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis. BMC Genom 15:228. doi:10.1186/1471-2164-15-228

    Article  Google Scholar 

  • Meller R, Stevens SL, Minami M, Cameron JA, King S, Rosenzweig H, Doyle K, Lessov NS, Simon RP, Stenzel-Poore MP (2005) Neuroprotection by osteopontin in stroke. J Cereb Blood Flow Metab 25(2):217–225. doi:10.1038/sj.jcbfm.9600022

    Article  CAS  PubMed  Google Scholar 

  • Miasoedov NF, Skvortsova VI, Nasonov EL, Zhuravleva EI, Grivennikov IA, Arsen’eva EL, Sukhanov II (1999) Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke. Zhurnal Nevrologii I Psikhiatrii Imeni S.S. Korsakova 99(5):15–19

    Google Scholar 

  • Naldini A, Leali D, Pucci A, Carraro F, Nico B, Ribatti D, Presta M (2011) Cutting Edge: IL-1 β mediates the proangiogenic activity of osteopontin-activated human monocytes. J Immunol 177:4267–4270

    Article  Google Scholar 

  • Naylor M, Bowen KK, Sailor KA, Dempsey RJ, Vemuganti R (2005) Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int 47(8):565–572. doi:10.1016/j.neuint.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Gupta A, Prentice H, Wu J-Y (2010) Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons. J Biomed Sci 17(1):S18. doi:10.1186/1423-0127-17-S1-S18

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S, Hong Y-W (2006) Transcriptional regulation of artemin is related to neurite outgrowth and actin polymerization in mature DRG neurons. Neurosci Lett 404(1–2):61–66. doi:10.1016/j.neulet.2006.05.041

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinteaux E, Trotter P, Simi A (2009) Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 45(1):1–7. doi:10.1016/j.cyto.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638. doi:10.1016/j.tcb.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  • Polunin GS, Nurieva SM, Baiandin DL, Sheremet NL, Andreeva LA (2000) Evaluation of therapeutic effect of new Russian drug semax in optic nerve disease. Vestn Oftalmol 116(1):15–18

    CAS  PubMed  Google Scholar 

  • Sawada N, Kim H-H, Moskowitz MA, Liao JK (2009) Rac1 is a critical mediator of endothelium-derived neurotrophic activity. Sci Signal 2(61):ra10. doi:10.1126/scisignal.2000162

    Article  PubMed  PubMed Central  Google Scholar 

  • Schäbitz W-R, Schneider A (2006) Developing granulocyte-colony stimulating factor for the treatment of stroke: current status of clinical trials. Stroke 37(7):1654. doi:10.1161/01.STR.0000227299.62106.0e

    Article  PubMed  Google Scholar 

  • Schäbitz W-R, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Schölzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34(3):745–751. doi:10.1161/01.str.0000057814.70180.17

    Article  PubMed  Google Scholar 

  • Schultz GS, Grant MB (1991) Neovascular growth factors. Eye (Lond) 5(Pt 2):170–180. doi:10.1038/eye.1991.31

    Article  Google Scholar 

  • Shadrina MI, Dolotov OV, Grivennikov IA, Slominsky PA, Andreeva LA, Inozemtseva LS, Limborska SA, Myasoedov NF (2001) Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analog. Neurosci Lett 308(2):115–118

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko KV, V’iunova TV, Nagaev II, Andreeva LA, Miasoedov NF (2013) Proteolysis of simple glyprolines by leucine aminopeptidase and enzymes from nasal slime, brain membranes, and rat blood. Bioorg Khim 39(3):320–325

    CAS  PubMed  Google Scholar 

  • Silvestre J-S, Mallat Z, Tedgui A, Lévy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78(2):242–249. doi:10.1093/cvr/cvn027

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Emsley HCA, Gavin CM, Georgiou RF, Vail A, Barberan EM, del Zoppo GJ, Hallenbeck JM, Rothwell NJ, Hopkins SJ, Tyrrell PJ (2004) Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 4:2. doi:10.1186/1471-2377-4-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Solaroglu I, Tsubokawa T, Cahill J, Zhang JH (2006) Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience 143(4):965–974. doi:10.1016/j.neuroscience.2006.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12:712–724

    Article  CAS  PubMed  Google Scholar 

  • Stavchansky VV, Yuzhakov VV, Botsina AY, Skvortsova VI, Bondurko LN, Tsyganova MG, Limborska SA, Myasoedov NF, Dergunova LV (2011) The effect of Semax and its C-end peptide PGP on the morphology and proliferative activity of rat brain cells during experimental ischemia: a pilot study. J Mol Neurosci 45(2):177–185. doi:10.1007/s12031-010-9421-2

    Article  CAS  PubMed  Google Scholar 

  • Storozhevykh TP, Tukhbatova GR, Senilova YE, Pinelis VG, Andreeva LA, Myasoyedov NF (2007) Effects of semax and its Pro-Gly-Pro fragment on calcium homeostasis of neurons and their survival under conditions of glutamate toxicity. Bull Exp Biol Med 143(5):601–604

    Article  CAS  PubMed  Google Scholar 

  • Strijbos PJ, Rothwell NJ (1995) Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci 15(5 Pt 1):3468–3474

    CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka K, Suzuki N (2009) Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 29(3):464–479. doi:10.1038/jcbfm.2008.141

    Article  CAS  PubMed  Google Scholar 

  • Vilenskiĭ DA, Levitskaia NG, Andreeva LA, Alfeeva LI, Kamenskiĭ AA, Miasoedov NF (2007) Effects of chronic Semax administration on exploratory activity and emotional reaction in white rats. Rossiĭskii Fiziologicheskiĭ Zhurnal Imeni I.M. Sechenova/Rossiĭskaia Akademiia Nauk 93(6):661–669

    PubMed  Google Scholar 

  • Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23(25):8692–8700

    CAS  PubMed  Google Scholar 

  • Wang X, Louden C, Yue TL, Ellison JA, Barone FC, Solleveld HA, Feuerstein GZ (1998) Delayed expression of osteopontin after focal stroke in the rat. J Neurosci 18(6):2075–2083

    CAS  PubMed  Google Scholar 

  • Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J (2002) Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann N Y Acad Sci 962:423–437

    Article  CAS  PubMed  Google Scholar 

  • Wang C-H, Wang W-T, Cheng S-Y, Hung W-T, Wu T-L, Hsueh C-M (2010) Leptin and interleukin-1beta modulate neuronal glutamate release and protect against glucose-oxygen-serum deprivation. Curr Neurovasc Res 7(3):223–237

    Article  CAS  PubMed  Google Scholar 

  • Yan Y-P, Lang BT, Vemuganti R, Dempsey RJ (2009) Osteopontin is a mediator of the lateral migration of neuroblasts from the subventricular zone after focal cerebral ischemia. Neurochem Int 55(8):826–832. doi:10.1016/j.neuint.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-J, Zou M, Lu L, Lau D, Ditzel DAW, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8):e1000604. doi:10.1371/journal.pgen.1000604

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang Y, Dutta DJ, Argaw AT, Bonnamain V, Seto J, Braun DA, Zameer A, Hayot F, Lopez CB, Raine CS, John GR (2011) Proapoptotic and antiapoptotic actions of Stat1 versus Stat3 underlie neuroprotective and immunoregulatory functions of IL-11. J Immunol (Baltim, Md: 1950) 187(3):1129–1141. doi:10.4049/jimmunol.1004066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Foundation for Basic Research (Grant Numbers 14-04-00487, 13-04-40083-H), the Program of the Russian Academy of Sciences “Molecular and Cellular Biology”, the Program “Support to Scientific Schools”, and a Grant of the President of the Russian Federation for federal support to young researchers, Candidates of Sciences, of Russia (Grant Number MК-2959.2014.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina V. Medvedeva.

Ethics declarations

Conflict of Interest

Authors E. V. Medvedeva, V. G. Dmitrieva, V. V. Stavchansky, O. V. Povarova, S. A. Limborska, N. F. Myasoedov and L. V. Dergunova declare that they have no conflict of interest.

Ethical approval

All experimental protocols were approved by Bioethics Comission of Lomonosov Moscow State University in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publ. No. 80–23, revised 1996). This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, E.V., Dmitrieva, V.G., Stavchansky, V.V. et al. Semax-Induced Changes in Growth Factor mRNA Levels in the Rat Brain on the Third Day After Ischemia. Int J Pept Res Ther 22, 197–209 (2016). https://doi.org/10.1007/s10989-015-9498-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9498-0

Keywords

Navigation