Skip to main content

Advertisement

Log in

Causal mediation analysis on failure time outcome without sequential ignorability

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Mediation analysis is an important topic as it helps researchers to understand why an intervention works. Most previous mediation analyses define effects in the mean scale and require a binary or continuous outcome. Recently, possible ways to define direct and indirect effects for causal mediation analysis with survival outcome were proposed. However, these methods mainly rely on the assumption of sequential ignorability, which implies no unmeasured confounding. To handle the potential confounding between the mediator and the outcome, in this article, we proposed a structural additive hazard model for mediation analysis with failure time outcome and derived estimators for controlled direct effects and controlled mediator effects. Our methods allow time-varying effects. Simulations showed that our proposed estimator is consistent in the presence of unmeasured confounding while the traditional additive hazard regression ignoring unmeasured confounding produces biased results. We applied our method to the Women’s Health Initiative data to study whether the dietary intervention affects breast cancer risk through changing body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL (2003) Implementation of the women’s health initiative study design. Ann Epidemiol 13:5–17

    Article  Google Scholar 

  • Baron RM, Kenny DA (1986) The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182

    Article  Google Scholar 

  • Cai T, Gerds TA, Zheng Y, Chen J (2011) Robust prediction of t-year survival with data from multiple studies. Biometrics 67:436–444

    Article  MathSciNet  MATH  Google Scholar 

  • Cleary MP, Grossmann ME (2009) Obesity and breast cancer: the estrogen connection. Endocrinology 150:2537–2542

    Article  Google Scholar 

  • Hernan MA, Cole SR (2009) Commentary causal diagrams and measurement bias. Am J Epidemiol 170:959–962

    Article  Google Scholar 

  • Howard BV, Manson JE, Stefanick ML, Beresford SA, Frank G, Jones B, Rodabough RJ, Snetselaar L, Thomson C, Tinker L, Vitolins M, Prentice R (2006) Low-fat dietary pattern and weight change over 7 years: the women’s health initiative dietary modification trial. J Am Med Assoc 295:39–49

    Article  Google Scholar 

  • Imai K, Keele L, Tingley D (2010a) A general approach to causal mediation analysis. Psychol Methods 15(4):309–334

    Article  Google Scholar 

  • Imai K, Keele L, Yamamoto T (2010b) Identification, inference, and sensitivity analysis for causal mediation effects. Stat Sci 25:51–71

    Article  MathSciNet  MATH  Google Scholar 

  • Lange T, Hansen JV (2011) Direct and indirect effects in a survival context. Epidemiology 22:575–581

    Article  Google Scholar 

  • Li J, Fine J, Brookhart A (2015) Instrumental variable additive hazards models. Biometrics 71:122–130

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    Article  MathSciNet  MATH  Google Scholar 

  • Lynch BM, Neilson HK, Fridenreich CM (2011) Physical activity and breast cancer prevention. Recent Results Cancer Res 186:13–42

    Article  Google Scholar 

  • MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614

    Article  Google Scholar 

  • Martinussen T, Vansteelandt S, Gerster M, Hjelmborg JB (2011) Estimation of direct effects for survival data by using the aalen additive hazards model. J R Stat Soc Ser B 73:773–788

    Article  MathSciNet  MATH  Google Scholar 

  • Pearl J (2001) Direct and rindirect effects. Proceedings of the seventeenth conference on uncertainty and artificial intelligence. Morgan Kaufmann, San Francisco

  • Pearl J (2014) Interpretation and identification of causal mediation. Psychol Methods 19:459–481

    Article  Google Scholar 

  • Prentice RL (2010) Letter in response to ’preventing breast cancer in postmenopausal women by achievable diet modification: A missed opportunity in public health policy’ (dayal hh and kalia a). Breast 19:309–311

    Article  Google Scholar 

  • Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller L, Ockene J, Margolis K, Limacher M, Manson J, Parker L, Paskett E, Phillips L, Robbins J, Rossouw J, Sarto G, Shikany J, Stefanick M, Thomson C, Van Horn L, Vitolins M, Wactawski-Wende J, Wallace R, Wassertheil-Smoller S, Whitlock E, Yano K, Adams-Campbell L, Anderson G, Assaf A, Beresford S, Black H, Brunner R, Brzyski R, Ford L, Gass M, Hays J, Heber D, Heiss G, Hendrix S, Hsia J, Hubbell F, Jackson R, Johnson K, Kotchen J, LaCroix A, Lane D, Langer R, Lasser N, Henderson M (2006) Low-fat dietary pattern and risk of invasive breast cancer. J Am Med Assoc 295:629–642

    Article  Google Scholar 

  • Ritenbaugh C, Patterson R, Rea Chlebowski (2003) The women’s health initiative dietary modification trial: overview and baseline characteristics of participants. Ann Epidemiol 13:S87–S97

    Article  Google Scholar 

  • Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 3:143–155

    Article  Google Scholar 

  • Robins JM, Rotnitzky RA (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. AIDS Epidemiology – Methodological Issues Boston, Birkhauser

    Book  Google Scholar 

  • Robins JM, Blevins D, Ritter G, Wulfsohn M (1992) G-estimation of the effect of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of aids patients. Epidemiology 3:319–336

    Article  Google Scholar 

  • Rubin D (1974) Estimating causal effects of treatments in randomizd and nonrandomized studies. J Educ Psychol 66(5):689

    Article  Google Scholar 

  • Small DS (2013) Mediation analysis without sequential ignorability: using baseline covariates interacted with random assignment as instrumental variables. J Stat Res 46:91–103

    MathSciNet  Google Scholar 

  • Tchetgen Tchetgen E (2011) On causal mediation analysis with a survival outcome. Int J Biostat 7:1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Tchetgen Tchetgen E, Walter S, Vansteelandt S, Martinussen T, Glymour M (2015) Instrumental variable estimation in a survival context. Epidemiology 26:402–410

    Article  Google Scholar 

  • Ten Have TR, Joffe MM, Lynch KG, Brown GK, Maisto SA, Beck AT (2007) Causal mediation analyses with rank preserving models. Biometrics 63(3):926–934

    Article  MathSciNet  MATH  Google Scholar 

  • The Women’s Health Initiative Study Group (1998) Design of the women’s health initiative clinical trial and observational study. Contemp Clin Trials 19:61–109

  • VanderWeele TJ (2010) Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology 21:540–551

    Article  Google Scholar 

  • VanderWeele TJ (2011) Causal mediation analysis with survival data. Epidemiology 22:582–585

    Article  Google Scholar 

  • VanderWeele TJ (2015) Explanation in causal inference: methods for mediation and interaction. Oxford University Press, New York

    Google Scholar 

  • Zheng C, Zhou X (2015) Causal mediation analysis in the multilevel intervention and multicomponent mediator case. J R Stat Soc Ser B 77:581–615

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The WHI programs is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts, HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zheng.

Ethics declarations

Program Office

(National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques Rossouw, Shari Ludlam, Dale Burwen, Joan McGowan, Leslie Ford and Nancy Geller.

Clinical Coordinating Center

(Fred Hutchinson Cancer Research Center, Seattle, WA) Garnet Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg.

Investigators and Academic Centers

(Brigham and Women’s Hospital, Harvard Medical School, Boston, MA) JoAnn E. Manson; (MedStar Health Research Center, Stanford, CA) Marcia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thomson; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher; (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Pittsburgh, Pittsburgh, PA) Lewis Kuller; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker.

Women’s Health Initiative Memory Study

(Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker.

Appendices

Appendix A: Proof for Theorem 1

Here we first list the regularity conditions for the proof.

  • \(\varvec{\varTheta }(t)\) belong to a compact range of support and with the true value \(\varvec{\varTheta }_0(t)\) in the interior.

  • The joint density of observed variables has third order partial derivatives for \(\varvec{\varTheta }\).

  • Z, M and \(\varvec{X}\) are bounded.

  • \(S_C(t|z,m,\varvec{x})\) and \(S(t|z,m,\varvec{x})\) is bounded from 0.

Here, we will show the above conditions combined with Assumptions 1–9 is sufficient condition for locally (globally if stronger version of assumption 8 hold) identifiability of the parameter \(\varvec{\varTheta }\) from the estimating equation (4) with \(R(\varvec{X})=I_{n_i}\) and some \(A(Z,\varvec{X},t)\). For simplicity, we simply denote the summand of the right hand side of Eq. (4) as \(F_i(\varvec{\varTheta })\). Since the estimation of censoring survival distribution does not depend on \(\varvec{\varTheta }\) and can be identified and consistently estimated. So for the proof below, we will treat \(S_C(t|z,m,\varvec{x})\) as known. We will use the following steps to show the identifiability for each time point t and thus we will omit the notation t below. For any two parameters \(\varvec{\varTheta }_1\) and \(\varvec{\varTheta }_2\) that result in same distribution of observed variables, we will have

$$\begin{aligned} 0=E_{\varvec{\varTheta }_1}F_i(\varvec{\varTheta }_1)=E_{\varvec{\varTheta }_2}F_i(\varvec{\varTheta }_1). \end{aligned}$$

Also, we know that \(E_{\varvec{\varTheta }}F_i(\varvec{\varTheta })=0\) for any \(\varvec{\varTheta }\). So we have

$$\begin{aligned} 0=E_{\varvec{\varTheta }_2}F_i(\varvec{\varTheta }_1)=E_{\varvec{\varTheta }_2}F_i(\varvec{\varTheta }_2). \end{aligned}$$

So to prove that \(\varvec{\varTheta }_1=\varvec{\varTheta }_2\), we will just need to show \(0=E_{\varvec{\varTheta }_2}F_i(\varvec{\varTheta })\) have unique solution. It is suffice to show that the derivative of \(E_{\varvec{\varTheta }_2}F_i(\varvec{\varTheta })\) is positive definite. For local identifiability, as we assume the derivative is positive definite at \(\varvec{\varTheta }_0\) and the derivative is continuous with respect to \(\varvec{\varTheta }\), so there exists a region contain \(\varvec{\varTheta }_0\) such that the derivative above is positive definite at any value within the value, this is sufficient for the locally identifiability hold. For the global identifiability, the assumption 9 tells us that the derivative is positive definite at any \(\varvec{\varTheta }\).

Appendix B: Proof for Theorem 2

Here we prove that our estimator is regular and asymptotically linear (RAL) for a fixed time point t and thus we simply denote \(\varvec{\varTheta }(t)\) by \(\varvec{\varTheta }\) and the true value as \(\varvec{\varTheta }_0\). As the estimation of the survival distribution of C does not depend on \(\varvec{\varTheta }\) and we assumed that a regular asymptotic linear (RAL) estimator is used. By definition of RAL, we have

$$\begin{aligned} \sqrt{n}(\hat{S}_C(t|z,m,\varvec{x})-S_C(t|z,m,\varvec{x}))=n^{-1/2} \sum _i\tilde{\phi }_{i}(t|z,m,\varvec{x})+o_p(1). \end{aligned}$$

By delta method and the assumption that \(S_C(t)\) is bounded away from 0, we have

$$\begin{aligned} \sqrt{n}(\hat{S}_C^{-1}(t|z,m,\varvec{x})-S_C^{-1}(t|z,m,\varvec{x}))= & {} -n^{-1/2} \sum _iS_C^{-2}(t|z,m,\varvec{X})\phi _{i}(t|z,m,\varvec{x})\\&\quad +\,o_p(1)\\= & {} \,n^{-1/2}\sum _i\phi _{i}(t|z,m,\varvec{x})+o_p(1). \end{aligned}$$

For simplicity, we denote the estimating equation (4) for \(\varvec{\varTheta }\) as below:

$$\begin{aligned} n^{-1}\sum _i\sum _j \hat{S}_C^{-1}(t|Z_{ij},M_{ij},\varvec{X}_{ij})F_{ij}(\varvec{\varTheta }) \end{aligned}$$

where \(F_{ij}(\varvec{\varTheta })=F(T^{*}_{ij},Z_{ij},M_{ij},\varvec{X}_{ij},\varvec{\varTheta })\). Also, we denote \(\hat{S}_C^{-1}(t|Z_{ij},M_{ij},\varvec{X}_{ij})\) as \(\hat{S}_{Cij}\) and \(S_C^{-1}(t|Z_{ij},M_{ij},\varvec{X}_{ij})\) as \(S_{Cij}\) for notation simplicity.

We will first prove the consistency of \(\hat{\varvec{\varTheta }}\).

$$\begin{aligned} 0= & {} n^{-1}\sum _i\sum _j \hat{S}_{Cij}^{-1}(t)F_{ij}(\hat{\varvec{\varTheta }})\\= & {} n^{-1}\sum _i\sum _j S_{Cij}^{-1}(t)F_{ij}(\hat{\varvec{\varTheta }})+n^{-1}\sum _i\sum _j [\hat{S}_{Cij}^{-1}(t)-S_{Cij}^{-1}(t)]F_{ij}(\hat{\varvec{\varTheta }})\\ \end{aligned}$$

Since \(\hat{S}_{C}^{-1}(t|z,m,\varvec{x})-S_{C}^{-1}(t|z,m,\varvec{x})\) converge to 0 uniformly over t, z, m and \(\varvec{x}\) and \(F_{ij}(\hat{\varvec{\varTheta }})\) is bounded in probability, we know that the second term converge to 0 in probability. By regularity condition, we can take derivative over \(F_{ij}(\hat{\varvec{\varTheta }})\) and thus the first term become

$$\begin{aligned} n^{-1}\sum _i\sum _j S_{Cij}^{-1}(t)F_{ij}(\hat{\varvec{\varTheta }})= & {} n^{-1}\sum _i\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta }_0)\\&+\,n^{-1}\sum _i\sum _j S_{Cij}^{-1}(t)\frac{\partial F_{ij}(\varvec{\varTheta }^{*})}{\partial \varvec{\varTheta }}(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0)\\= & {} o_p(1)+\frac{\partial E(\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta }^{*}))}{\partial \varvec{\varTheta }}(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0) \end{aligned}$$

where \(\varvec{\varTheta }^{*}\) is between \(\varvec{\varTheta }_0\) and \(\hat{\varvec{\varTheta }}\). Under the locally identifiability assumption, we have \(\frac{\partial E(\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta }^{*}))}{\partial \varvec{\varTheta }}\) is positive definite, Since the derivative is continuous respect to \(\varvec{\varTheta }\), we have \(\frac{\partial E(\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta }^{*}))}{\partial \varvec{\varTheta }}\) is positive definite when \(\varvec{\varTheta }^{*}\) is within certain range of \(\varvec{\varTheta }_0\). So we have there exist a sequence of root \(\hat{\varvec{\varTheta }}\) such that \(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0=o_p(1)\). Or if we use the assumption of global identifiability, the derivative is positive definite for all \(\varvec{\varTheta }\) and thus we have \(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0=o_p(1)\). So we obtain the consistency of \(\hat{\varvec{\varTheta }}\). Note that \(\hat{S}(t|z,m,\varvec{x})\) and \(E_n(F_{ij}(\varvec{\varTheta }))\) are \(\sqrt{n}-\) consistency, so \(\forall d<1/2\), \(n^d(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0)=o_p(1)\).

Now we find the asymptotic expansion of \(\varvec{\varTheta }\).

$$\begin{aligned} 0= & {} n^{-1/2}\sum _i\sum _j \hat{S}_{Cij}^{-1}(t)F_{ij}(\hat{\varvec{\varTheta }})\\= & {} n^{-1/2}\sum _i\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta }_0)+n^{-1/2}\sum _i\sum _j S_{Cij}^{-1}(t)\frac{\partial F_{ij}}{\partial \varvec{\varTheta }}(\hat{\varvec{\varTheta }}-\varvec{\varTheta }_0)\\&+\,n^{-1/2}\sum _i\sum _j \big [\hat{S}_{Cij}^{-1}(t)-S_{Cij}^{-1}(t)\big ]F_{ij}(\hat{\varvec{\varTheta }}) +o\big (\sqrt{n}\Vert \hat{\varvec{\varTheta }}-\varvec{\varTheta }_0\Vert \big ) \end{aligned}$$

Here we just need to expand the third term as below

$$\begin{aligned} n^{-1/2}\sum _i\sum _j\big [\hat{S}_{Cij}^{-1}(t)-S_{Cij}^{-1}(t)\big ]F_{ij}(\hat{\varvec{\varTheta }})= & {} n^{-1/2}\sum _i\sum _j \big [\hat{S}_{Cij}^{-1}(t)-S_{Cij}^{-1}(t)\big ]\\&\quad \times \,F_{ij}(\varvec{\varTheta }_0)\,+\,o_p(1)\\= & {} n^{-3/2}\sum _i\sum _j \sum _{l}[\phi _{l}(t|Z_{ij},M_{ij},\varvec{X}_{ij})]\\&\quad \times \,F_{ij}(\varvec{\varTheta }_0)\,+\,o_p(1)\\= & {} n^{-1/2}\sum _{l} [n^{-1}\sum _i\sum _j\phi _{l}(t|Z_{ij},M_{ij},\varvec{X}_{ij})\\&\quad \times \,F_{ij}(\varvec{\varTheta }_0)]\,+\,o_p(1) \end{aligned}$$

Let \(E[\sum _j\phi _{l}(t|Z_{ij},M_{ij},\varvec{X}_{ij})F_{ij}(\varvec{\varTheta }_0)]=\psi _l\), then we have the quantity above is

$$\begin{aligned} n^{-1/2}\sum _{l}\psi _l+o_p(1) \end{aligned}$$

With the identification assumption, we know that

$$\begin{aligned} E\left[ \sum _jS_{Cij}^{-1}(t)\frac{\partial F_{ij}}{\partial \varvec{\varTheta }}\right] =\left[ \frac{\partial E\sum _jS_{Cij}^{-1}(t)F_{ij}}{\partial \varvec{\varTheta }}\right] \equiv \mathcal {A} \end{aligned}$$

is positive definite, so we have

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\varTheta }}-\varvec{\varTheta })= & {} \mathcal {A}^{-1}(n^{-1/2}\sum _i\left[ \sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta })+\psi _i\right] +o_p(1)\\= & {} n^{-1/2}\sum _i \varPsi _i \end{aligned}$$

where \(\varPsi _i=\sum _j S_{Cij}^{-1}(t)F_{ij}(\varvec{\varTheta })+\psi _i\). So we have proved that our estimator is asymptotic linear at each time point t. For any finite time points, the \(o_p(1)\) term in the proof above will be uniform and thus we can have that for any finite dimension, the distribution is joint normal. Then it follows that we have \(\varvec{\varTheta }(t),t\in [t_1,t_2]\) converge to a Gaussian Process.

Appendix C: Proof for Theorem 3

The proof is similar to that for Theorem 2 and we will just list the general steps here. For notation simplicity, we denote the estimating equations (6) and (7) as

$$\begin{aligned} 0= & {} \sum _{i=1}^n S_{1i}(\varvec{\varTheta },\varvec{\beta },\hat{S}(t|z))\\ 0= & {} \sum _{i=1}^n S_{2i}(\varvec{\varTheta },\varvec{\beta },\hat{S}(t|z))\\ \end{aligned}$$

Since we have shown the estimator in Theorem 2, denoted as \(\hat{\varvec{\varTheta }}^{(0)}\) consistent to \(\varvec{\varTheta }\), so we have

$$\begin{aligned} \sum _{i=1}^n S_{1i}(\hat{\varvec{\varTheta }}^{(0)},\varvec{\beta },\hat{S}(t|z))\longrightarrow _p 0 \end{aligned}$$

for any \(\varvec{\beta }\). We also have

$$\begin{aligned} \sum _{i=1}^n S_{2i}(\varvec{\varTheta },\varvec{\beta },\hat{S}(t|z))\longrightarrow _p ES_{2i}(\varvec{\varTheta }_0,\varvec{\beta }, S(t|z)). \end{aligned}$$

Under following additional assumptions:

  • For the A(zxt) and R(x) we choose, Eq. 4 is bounded in probability for all \(\varvec{\varTheta }\);

  • The joint density of observed variables have third order partial derivatives for both \(\varvec{\varTheta }\) and \(\varvec{\beta }\);

  • The estimating equation for \(\varvec{\beta }\) have unique solution under \(\varvec{\varTheta }_0\);

we know that \(\hat{\varvec{\beta }}^{(1)}\longrightarrow _p \varvec{\beta }^0\). Using same argument, we can show for k-th iteration, \(\hat{\varvec{\varTheta }}^{(k)}\) and \(\hat{\varvec{\beta }}^{(k)}\) consistent to their true values. So if the limiting exist, then the final estimator \(\hat{\varvec{\varTheta }}\) and \(\hat{\varvec{\beta }}\) is consistent estimator and jointly solve estimating equations (6) and (7). Then the asymptotic normality and linear expansion can be obtained using standard Taylor expansion as used for sandwich estimator.

Appendix D: Pseudo-Code for Implementation

1.1 Appendix D.1: Pseudo Code for Table 1

  1. 1.

    Fit traditional additive hazard model to obtain \(\hat{\varvec{\varTheta }}(t)\).

  2. 2.

    Fit Cox model or additive hazard regression model to obtain \(\hat{S}_C(t|Z,M,X)\).

  3. 3.

    Fit regression model to obtain \(E(Z|\varvec{X})\), \(E[M|Z=0,\varvec{X}]\) and \(E[M|Z=1,\varvec{X}]\) and compute \(A(Z,\varvec{X},t)=(Z-E(Z|\varvec{X}))(E[M|Z=1,\varvec{X}]-E[M|Z=0,\varvec{X}])\).

  4. 4.

    For a series of fixed t, solve the estimation equation in (3) via quasi-Newton method starting from \(\hat{\varvec{\varTheta }}(t)\) to obtain \(\hat{\varvec{\varTheta }}^{(0)}(t)\).

  5. 5.

    Fit weighted linear regression of \(\frac{I(T^{*}_{i}>t)}{\hat{S}_C(t|Z_{i},M_{i},\varvec{X}_{i})}\exp (\varTheta _{z}^{(k)}(t) Z_{i}+\varTheta _m^{(k)}(t)M_{i})\) on X to obtain \(\varvec{\beta }^{(k+1)}(t)\).

  6. 6.

    Solve estimation equation in (5), treating \(\varvec{\beta }(t)=\varvec{\beta }^{(k+1)}(t)\) as fixed to obtain \(\hat{\varvec{\varTheta }}^{(k+1)}(t)\).

  7. 7.

    Repeat 4 and 5 until converge to obtain estimation with linear adjusted covariates.

  8. 8.

    Compute \(\hat{\theta }\) from \(\hat{\varTheta }\) using formula \(\hat{\theta }_z=\hat{\varTheta }_z(t)/(t-t_z)\) and \(\hat{\theta }_m=\hat{\varTheta }_m(t)/(t-t_m)\)

  9. 9.

    Use Bootstrap to obtain confidence interval

1.2 Appendix D.2: Pseudo Code for Table 2

  1. 1.

    Fix a sequence of t, denoted as \(t_1\), \(\ldots \), \(t_K\). For each \(t_i\), using the algorithm in Appendix D.1 to obtain corresponding \(\hat{\theta }_z(i)\) and \(\hat{\theta }_m(i)\) with or without linear adjustment.

  2. 2.

    Compute standard error \(se_z(i)\) and \(se_m(i)\) for \(\hat{\theta }_z(i)\) and \(\hat{\theta }_m(i)\).

  3. 3.

    For the “select method”, let \(\hat{\theta }_z\) be the \(\hat{\theta }_z(i)\) such that \(se_z(i)\) attains minimum among all i’s, and \(\hat{\theta }_m\) be the \(\hat{\theta }_m(i)\) such that \(se_m(i)\) attains minimum among all i’s.

  4. 4.

    For “combine method”, let \(\hat{\theta }_z=\frac{\sum _{i=1}^K se^{-1}_z(i)\hat{\theta }_z(i)}{\sum _{i=1}^K se^{-1}_z(i)}\) and \(\hat{\theta }_m=\frac{\sum _{i=1}^K se^{-1}_m(i)\hat{\theta }_m(i)}{\sum _{i=1}^K se^{-1}_m(i)}\).

  5. 5.

    Use Bootstrap to obtain the confidence interval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Zhou, XH. Causal mediation analysis on failure time outcome without sequential ignorability. Lifetime Data Anal 23, 533–559 (2017). https://doi.org/10.1007/s10985-016-9377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-016-9377-9

Keywords

Mathematics Subject Classification

Navigation