Skip to main content
Log in

Additive mixed effect model for recurrent gap time data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Gap times between recurrent events are often of primary interest in medical and observational studies. The additive hazards model, focusing on risk differences rather than risk ratios, has been widely used in practice. However, the marginal additive hazards model does not take the dependence among gap times into account. In this paper, we propose an additive mixed effect model to analyze gap time data, and the proposed model includes a subject-specific random effect to account for the dependence among the gap times. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the resulting estimators are established. In addition, some graphical and numerical procedures are presented for model checking. The finite sample behavior of the proposed methods is evaluated through simulation studies, and an application to a data set from a clinic study on chronic granulomatous disease is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J, Zeng D (2011) Additive mixed effect model for clustered failure time data. Biometrics 67:1340–1351

    Article  MathSciNet  MATH  Google Scholar 

  • Chang SH, Wang MC (1999) Conditional regression analysis for recurrence time data. J Am Stat Assoc 94:1221–1230

    Article  MathSciNet  MATH  Google Scholar 

  • Chang SH (2004) Estimating marginal effects in accelerated failure time models for serial sojourn among repeated event. Lifetime Data Anal 10:175–190

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  • Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee K-A (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: Application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104:60–75

    Article  MathSciNet  MATH  Google Scholar 

  • Darlington GA, Dixon SN (2013) Event-weighted proportional hazards modelling for recurrent gap time data. Stat Med 32:124–130

    Article  MathSciNet  Google Scholar 

  • Du P (2009) Nonparametric modeling of the gap time in recurrent event data. Lifetime Data Anal 15:256–277

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Gail MH, Santner TJ, Brown CC (1980) An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics 36:255–266

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y, Chen YQ (2003) Marginal regression of gaps between recurrent events. Lifetime Data Anal 9:293–303

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Liu L (2007) A joint frailty model for survival and gap times between recurrent events. Biometrics 63:389–397

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Sun W, Ying Z (1999) Nonparametric estimation of the gap time distribution for serial events with censored data. Biometrika 86:59–70

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate function of recurrent events. J R Stat Soc B 69:711–730

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Ying Z (1998) Accelerated failure time models for counting processes. Biometrika 85:605–618

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Ying Z (2001) Semiparametric transformationmodels for point processes. J Am Stat Assoc 96:620–628

    Article  MATH  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    Article  MathSciNet  MATH  Google Scholar 

  • Lu W (2005) Marginal regression of multivariate event times based on linear transformation models. Lifetime Data Anal 11:389–404

    Article  MathSciNet  MATH  Google Scholar 

  • Luo X, Huang CY (2011) Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method. Stat Med 30:301–311

    Article  MathSciNet  Google Scholar 

  • Luo X, Huang CY, Wang L (2013) Quantile regression for recurrent gap time data. Biometrics 69:375–385

    Article  MathSciNet  MATH  Google Scholar 

  • McKeague IW, Sasieni PD (1994) A partly parametric additive risk model. Biometrika 81:501–514

    Article  MathSciNet  MATH  Google Scholar 

  • Peña EA, Strawderman R, Hollander M (2001) Nonparametric estimation with recurrent event data. J Am Stat Assoc 96:1299–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Pepe MS, Cai J (1993) Some graphical displays andmarginal regression analyses for recurrent failure times and time-dependent covariates. J Am Stat Assoc 88:811–820

    Article  MATH  Google Scholar 

  • Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward

    MATH  Google Scholar 

  • Schaubel DE, Cai J (2004) Regression analysis for gap time hazard functions of sequentially ordered multivariate failure time data. Biometrika 91:291–303

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman RL (2005) The accelerated gap times model. Biometrika 92:647–666

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Park D, Sun J (2006) The addicitve hazards model for recurrent gap times. Stat Sinica 16:919–932

    MATH  Google Scholar 

  • Sun L, Tong X, Zhou X (2011) A class of Box-Cox transformation models for recurrent event data. Lifetime Data Anal 17:280–301

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Zhao X, Zhou J (2011) A class of mixed models for recurrent event data. Can J Stat 39:578–590

    Article  MathSciNet  MATH  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York

    Book  MATH  Google Scholar 

  • Wang MC, Chang SH (1999) Nonparametric estimation of a recurrent survival function. J Am Stat Assoc 94:146–153

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MC, Chen YQ (2000) Nonparametric and semiparametric trend analysis of stratified recurrence time data. Biometrics 56:789–794

    Article  MATH  Google Scholar 

  • Yin G (2007) Model checking for additvie hazards model with multivariate survival data. J Multivar Anal 98:1018–1032

    Article  MATH  Google Scholar 

  • Yin G, Cai J (2004) Additive hazards model with multivariate failure time data. Biometrika 91:801–818

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Cai J (2010) Semiparametric additive rate model for recurrent events with informative terminal event. Biometrika 97:699–712

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin DY (2007) Semiparametric transformation models with random effects for recurrent events. J Am Stat Assoc 102:167–180

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor, Professor Mei-Ling Ting Lee, an Associate Editor, and two reviewers for their insightful comments and suggestions that greatly improved the article. This research was partly supported by the National Natural Science Foundation of China Grants (No. 11231010, 11171330 and 11101314), Key Laboratory of RCSDS, CAS (No. 2008DP173182) and BCMIIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuquan Sun.

Appendices

Appendix A: Proofs of Asymptotic Properties

In order to study the asymptotic properties of the proposed estimators, we need the following regularity conditions:

  1. (C1)

    \(P(X_{i1}\ge \tau )>0,\) and \(E(\Vert Z_i\Vert ^2)<\infty .\)

  2. (C2)

    \(H_0(t)\) is a right-continuous increasing function and satisfies \(H_0(\tau )<\infty \).

  3. (C3)

    The matrix A is nonsingular, where

    $$\begin{aligned} A=E\Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau }Y_{ij}(t) \big \{Z_i-\bar{z}(t)\big \}^{\otimes 2}dt\Big ]. \end{aligned}$$

Proof of Theorem 1

Using the uniform strong law of large numbers (Pollard 1990, p. 41), we obtain

$$\begin{aligned} \frac{1}{n}\sum \limits _{i=1}^n\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} Y_{ij}(t) \longrightarrow E\Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} I(X_{ij}\ge t)\Big ], \end{aligned}$$

and

$$\begin{aligned} \frac{1}{n}\sum \limits _{i=1}^n\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} Y_{ij}(t)Z_i \longrightarrow E\Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} Z_iI(X_{ij}\ge t)\Big ] \end{aligned}$$

almost surely uniformly in \(t\in [0,\tau ]\). Thus, \(\bar{Z}(t)\) converges almost surely to \(\bar{z}(t)\) uniformly in \(t\in [0,\tau ]\). Similarly,

$$\begin{aligned} \hat{A}=\frac{1}{n}\sum \limits _{i=1}^n\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } Y_{ij}(t)\{Z_i-\bar{Z}(t)\}^{\otimes 2}dt \longrightarrow A \end{aligned}$$
(10)

almost surely. Define

$$\begin{aligned} dM^{(0)}_{ij}(t)=dN_{ij}(t)-Y_{ij}(t)\big \{dH_0(t)+ \beta _0' Z_i dt\big \}. \end{aligned}$$

Then we have

$$\begin{aligned}&\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{Z}(t)\big \}dN_{ij}(t)\nonumber \\&\qquad =\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{Z}(t)\big \} dM_{ij}^{(0)}(t) + \hat{A} \beta _0\nonumber \\&\qquad \longrightarrow A \beta _0 \end{aligned}$$
(11)

almost surely uniformly in \(t\in [0,\tau ]\). Therefore, it follows from (10) and (11) that

$$\begin{aligned} \hat{\beta } = \hat{A}^{-1} \Big [\frac{1}{n} \sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \{Z_i-\bar{Z}(t)\} dN_{ij}(t)\Big ] \longrightarrow \beta _0 \end{aligned}$$

almost surely.

To prove the asymptotic normality of \(\hat{\beta }\), write

$$\begin{aligned} \hat{\beta }-\beta _0= & {} \hat{A}^{-1}\Big [\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{Z}(t)\big \}dN_{ij}(t)\\&-\frac{1}{n}\sum \limits _{i=1}^n\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } Y_{ij}(t)\{Z_i-\bar{Z}(t)\}^{\otimes 2}\beta _0 dt\Big ]\\= & {} \hat{A}^{-1}\Big [\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{Z}(t)\big \}\big \{dN_{ij}(t)-Y_{ij}(t)\beta _0' Z_i dt\big \}\Big ]\\= & {} \hat{A}^{-1} \Big [\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} \int _{0}^{\tau }\big \{Z_i-\bar{Z}(t)\big \} dM_{ij}^{(0)}(t)\Big ]. \end{aligned}$$

Since \(\bar{Z}(t)\) converges almost surely to \(\bar{z}(t)\) uniformly in \(t\in [0,\tau ]\), using Lemma 1 in the Appendix of Lin et al. (2000) and (10), we have

$$\begin{aligned} n^{1/2}(\hat{\beta }-\beta _0) =A^{-1} \Big [ n^{-1/2} \sum \limits _{i=1}^{n} \frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau }\big \{Z_i-\bar{z}(t)\big \}dM_{ij}^{(0)}(t) \Big ] +o_p(1). \end{aligned}$$
(12)

Note that

$$\begin{aligned} E\Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{z}(t)\big \} dM_{ij}^{(0)}(t)\Big ]=0. \end{aligned}$$

It then follows from the multivariate central limit theorem that \( n^{1/2}(\hat{\beta }-\beta _0)\) is asymptotically normal with mean zero and covariance matrix \(A^{-1}\Sigma A^{-1}\), where

$$\begin{aligned} \Sigma = E \Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau } \big \{Z_i-\bar{z}(t)\big \}dM_{ij}^{(0)}(t)\Big ]^{\otimes 2}. \end{aligned}$$

\(\square \)

Proof of Theorem 2

Define

$$\begin{aligned} dQ^{(0)}_{ij}(t)=dN_{ij}(t)-Y_{ij}(t)\big \{ d\Lambda _0(t)+ \beta _0' Z_i dt+\xi _idt \big \}. \end{aligned}$$

In view of (6), we have

$$\begin{aligned} \hat{\Lambda }_0(t)-\Lambda _0(t) =\frac{1}{n}\sum \limits _{i=1}^{n}\int _0^t \frac{\sum \nolimits _{j=1}^{M_i^*} dQ^{(0)}_{ij}(u)}{ \sum \nolimits _{j=1}^{M_i^*} Y_{ij}(u)} -D(t)' (\hat{\beta }-\beta _0) + \Big (\frac{1}{n}\sum \limits _{i=1}^{n} \xi _i\Big )t, \end{aligned}$$
(13)

where \( D(t)=n^{-1}\sum _{i=1}^n Z_i t.\) Note that

$$\begin{aligned} E\bigg [\int _0^t\frac{\sum \nolimits _{j=1}^{M_i^*} dQ^{(0)}_{ij}(u)}{\sum \nolimits _{j=1}^{M_i^*} Y_{ij}(u)}\bigg ]=0. \end{aligned}$$

Then it follows from the uniform strong law of large numbers that the first term on the right-hand side of (13) converges almost surely to 0 uniformly in \(t\in [0,\tau ]\). Since \(\hat{\beta }-\beta _0\) and \(n^{-1}\sum _{i=1}^{n} \xi _i\) converge almost surely to 0, the second and third terms converge almost surely to 0 uniformly in \(t\in [0,\tau ]\) as well. Thus, \(\hat{\Lambda }_0(t)\) converges almost surely to \(\Lambda _0(t)\) uniformly in \(t\in [0,\tau ]\).

To show the weak convergence of \(n^{1/2}\{\hat{\Lambda }_0(t)-\Lambda _0(t)\}\), it follows from (12) and (13) that

$$\begin{aligned} n^{1/2}\{\hat{\Lambda }_0(t)-\Lambda _0(t)\}= & {} n^{-1/2}\sum \limits _{i=1}^{n} \int _{0}^{t} \frac{\sum \nolimits _{j=1}^{M_i^*}\big [dQ^{(0)}_{ij}(u)+Y_{ij}(u)\xi _idu\big ]}{\sum \nolimits _{j=1}^{M_i^*}Y_{ij}(u)} \nonumber \\&-D(t)' n^{1/2} (\hat{\beta }-\beta _0)\nonumber \\= & {} n^{-1/2}\sum \limits _{i=1}^{n} \phi _i(t)+o_p(1), \end{aligned}$$
(14)

where

$$\begin{aligned} \phi _i(t)=&\int _{0}^{t} \frac{\sum \limits _{j=1}^{M_i^*}\big [dN_{ij}(u)-Y_{ij}(u)\big \{d\Lambda _0(u)+\beta _0'Z_i du\big \}\big ]}{\sum \nolimits _{j=1}^{M_i^*}Y_{ij}(u)}\\&- d(t)' A^{-1} \Big [ \frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{\tau }\big \{Z_i-\bar{z}(t)\big \}dM_{ij}^{(0)}(t)\Big ]. \end{aligned}$$

Because \(\phi _i(t)\) \((i=1, \ldots , n)\) are independent zero-mean random variables for each t,  the multivariate central limit theorem implies that \(n^{1/2}\{\hat{\Lambda }_0(t)-\Lambda _0(t)\}\) converges in finite-dimensional distribution to a zero-mean Gaussian process. Note that \(Z_i = \max \{Z_i, 0 \}-\max \{-Z_i, 0 \}.\) Then the first term of \(\phi _i(t)\) can be written as sums of monotone processes and are thus tight (Vaart and Wellner 1996). The second term is tight because d(t) is a deterministic function and \( n^{1/2}(\hat{\beta }-\beta _0)\) converges in distribution. Thus, \(n^{1/2}\{\hat{\Lambda }_0(t)-\Lambda _0(t)\}\) is tight and converges weakly to a zero-mean Gaussian process whose covariance function at (st) is given by \(\Gamma (s,t)=E[\phi _i(s)\phi _i(t)],\) which can be consistently estimated by \(\hat{\Gamma }(s,t)\) defined in Theorem 2. \(\square \)

Appendix B: Proof of (7) in Sect. 5

Define \( dM_i^{(0)}(t)=\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}dM_{ij}^{(0)}(t). \) Due to (12), we have that uniformly in t and z,

$$\begin{aligned} n^{1/2}\{\hat{H}(t)-H_0(t)\}= & {} n^{-1/2}\sum \limits _{i=1}^{n}\int _{0}^{t} \frac{dM_{i}^{(0)}(u)}{n^{-1}\sum \limits _{i=1}^{n}M_i^{*-1}\sum \limits _{j=1}^{M_i^*}Y_{ij}(u)}\nonumber \\&-n^{-1/2}\sum \limits _{i=1}^{n}\int _{0}^{t}\bar{Z}(u)'du A^{-1} \Big [\int _{0}^{\tau }\{Z_i-\bar{z}(t)\}dM_i^{(0)}(t)\Big ] +o_p(1).\nonumber \\ \end{aligned}$$
(15)

Thus, it follows from (12) and (15) that uniformly in t and z,

$$\begin{aligned} \mathcal {F}(t,z)= & {} n^{-1/2}\sum \limits _{i=1}^{n}\int _{0}^{t}I(Z_i\le z)\ d M_{i}^{(0)}(u)\\&-\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{t}I(Z_i\le z)Y_{ij}(u)n^{1/2} d \big \{\hat{H}(u)-H_0(u)\big \}\\&-\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*} \int _{0}^{t}I(Z_i\le z)Y_{ij}(u)Z_i'du\big \{n^{1/2}(\hat{\beta }-\beta _0)\big \}\\= & {} n^{-1/2}\sum \limits _{i=1}^{n}\int _{0}^{t} \Bigg [I(Z_i\le z)-\frac{\sum \nolimits _{i=1}^{n}M_i^{*-1}\sum \nolimits _{j=1}^{M_i^*}I(Z_i\le z)Y_{ij}(u)}{\sum \nolimits _{i=1}^{n}M_i^{*-1}\sum \nolimits _{j=1}^{M_i^*}Y_{ij}(u)}\Bigg ]dM_{i}^{(0)}(u)\\&-n^{-1/2}\sum \nolimits _{i=1}^{n} \Big [\frac{1}{n}\sum \limits _{i=1}^{n}\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{t}I(Z_i\le z)Y_{ij}(u)\big \{Z_i-\bar{Z}(u)\big \}'du\Big ]\\&\times A^{-1} \int _{0}^{\tau }\big \{Z_i-\bar{z}(t)\big \}dM_i^{(0)}(t) +o_p(1). \end{aligned}$$

Therefore, we obtain that uniformly in t and z,

$$\begin{aligned} \mathcal {F}(t,z)= & {} n^{-1/2}\sum \limits _{i=1}^{n} \Big [ \int _{0}^{t}\big \{I(Z_i\le z)-B(u,z)\big \}dM_{i}^{(0)}(u) \nonumber \\&\qquad \qquad \qquad - C(t,z)'A^{-1}\int _{0}^{\tau }\{Z_i-\bar{z}(t)\}dM_i^{(0)}(t) \Big ]\nonumber \\&+o_p(1), \end{aligned}$$
(16)

where

$$\begin{aligned} B(t,z)=\frac{E\Big [M_i^{*-1}\sum \nolimits _{j=1}^{M_i^*}I(Z_i\le z)Y_{ij}(t)\Big ]}{E\Big [M_i^{*-1}\sum \nolimits _{j=1}^{M_i^*}Y_{ij}(t)\Big ]}, \end{aligned}$$

and

$$\begin{aligned} C(t,z)=E\Big [\frac{1}{M_i^*}\sum \limits _{j=1}^{M_i^*}\int _{0}^{t}I(Z_i\le z)Y_{ij}(u)\{Z_i-\bar{z}(u)\} du \Big ]. \end{aligned}$$

The multivariate central limit theorem implies that \(\mathcal {F}(t,z)\) converges in finite-dimensional distribution to a zero-mean Gaussian process. \(\mathcal {F}(t,z)\) is tight by using the same arguments as the tightness of \(n^{1/2}\{\hat{\Lambda }_0(t)-\Lambda _0(t)\}\). Hence \(\mathcal {F}(t,z)\) converges weakly to a zero-mean Gaussian process which can be approximated by \(\tilde{\mathcal {F}}(t,z)\) given in (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Sun, L. Additive mixed effect model for recurrent gap time data. Lifetime Data Anal 23, 223–253 (2017). https://doi.org/10.1007/s10985-015-9341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9341-0

Keywords

Navigation