Skip to main content
Log in

Comparing center-specific cumulative incidence functions

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

The competing risks data structure arises frequently in clinical and epidemiologic studies. In such settings, the cumulative incidence function is often used to describe the ultimate occurrence of a particular cause of interest. If the objective of the analysis is to compare subgroups of patients with respect to cumulative incidence, imbalance with respect to group-specific covariate distributions must generally be factored out, particularly in observational studies. This report proposes a measure to contrast center- (or, more generally group-) specific cumulative incidence functions (CIF). One such application involves evaluating organ procurement organizations with respect to the cumulative incidence of kidney transplantation. In this case, the competing risks include (i) death on the wait-list and (ii) removal from the wait-list. The proposed method assumes proportional cause-specific hazards, which are estimated through Cox models stratified by center. The proposed center effect measure compares the average CIF for a given center to the average CIF that would have resulted if that particular center had covariate pattern-specific cumulative incidence equal to that of the national average. We apply the proposed methods to data obtained from a national organ transplant registry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson PK, Borgan A, Gill RD, Keiding N (1993) Statistical models based on counting processes. Biometrics 24:100–101

    MATH  Google Scholar 

  • Benichou J, Gail MH (1990) Estimates of absolute cause-specific risk in cohort studies. Biometrics 46:813–826

    Article  Google Scholar 

  • Breslow N (1972) Contribution to the discussion on the paper by D. R. Cox, regression and life tables. J R Stat Soc B 34:216–217

    MathSciNet  Google Scholar 

  • Cheng SC, Fine JP, Wei LJ (1998) Prediction of cumulative incidence function under the proportional hazards model. Biometrics 54:219–228

    Article  MathSciNet  MATH  Google Scholar 

  • Chiang CL (1968) Introduction to stochastic processes in biostatistics. Wiley, New York

    MATH  Google Scholar 

  • Cox DR (1959) The analysis of exponentially distributed lifetimes with two types of failure. J R Stat Soc B 21:411–421

    MATH  Google Scholar 

  • Cox D (1972) Regression models and life-tables (with discussion). J R Stat Soc B 34:187–220

    MATH  Google Scholar 

  • Cox D (1975) Partial likelihood. Biometrika 62:262–276

    Article  MathSciNet  MATH  Google Scholar 

  • Crowder MJ (2001) Classical competing risks. Chapman and Hall/CRC Press, London

    Book  MATH  Google Scholar 

  • Dabrowska DM, Doksum KA (1988) Estimates and testing in a two-sample generalized odds-rate model. J Am Stat Assoc 83:744–749

    Article  MathSciNet  MATH  Google Scholar 

  • DeLong ER, Peterson ED, DeLong DM, Muhlbaier LH, Hackett S, Mark DB (1997) Comparing risk-adjustment methods for provider profiling. Stat Med 16:2645–2664

    Article  Google Scholar 

  • Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Gail MH (1975) A review and critique of some models used in competing risk analysis. Biometrics 31:209–222

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RJ (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16:1141–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Harrington DP, Fleming TR (1982) A class of rank test procedures for censored survival data. Biometrika 69(3):553–566

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis. Springer, New York

    MATH  Google Scholar 

  • Logan BR, Nelson GO, Klein JP (2008) Analyzing center specific outcomes in hematopoietic cell transplantation. Lifetime Data Anal 14(4):389–404

    Article  MathSciNet  MATH  Google Scholar 

  • Moeschberger ML, David HA (1971) Life tests under competing causes of failure and the theory of competing risks. Biometrics 27:909–923

    Article  Google Scholar 

  • Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy V, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554

    Article  MATH  Google Scholar 

  • Tsiatis AA (1975) A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci 72:20–22

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang MJ, Fine JP (2008) Summarizing differences in cumulative incidence functions. Stat Med 27:4939–4949

    Article  MathSciNet  Google Scholar 

  • Zhang X, Zhang MJ (2011) SAS macros for estimation of direct adjusted cumulative incidence curves under proportional subdistribution hazards models. Comput Methods Programs Biomed 101:87–93

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Institutes of Health Grant 5R01-DK070869 (DES). The authors thank the Associate Editor and Reviewers for constructive suggestions which improved the manuscript. The authors also thank the Scientific Registry of Transplant Recipients (SRTR) for access to the organ transplant database. The SRTR is funded by a contract from the Health Resources and Services Administration (HRSA), U.S. Department of Health and Human Services. The views expressed in this report do not represent those of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Schaubel.

Appendix

Appendix

Proof of Theorem 2

The proof revolves around asymptotic expansions of the following quantities.

  1. 1.

    \(n^{\frac{1}{2}}(\widehat{{\varvec{\beta }}}_k - {\varvec{\beta }}_k)\)

  2. 2.

    \(n^{\frac{1}{2}}\left\{ \widehat{{\varLambda }}^\#_{0jk}(t)-{\varLambda }^\#_{0jk}(t) \right\} \)

  3. 3.

    \(n^{\frac{1}{2}}\left\{ \widehat{{\varLambda }}^\#_{ijk}(t)-{\varLambda }^\#_{ijk}(t)\right\} \)

  4. 4.

    \(n^{\frac{1}{2}}\left\{ \widehat{S}_{ij}(t)-S_{ij}(t) \right\} \)

  5. 5.

    \(n^{\frac{1}{2}}\left\{ \widehat{F}_{ijk}(t) - F_{ijk}(t) \right\} \)

  6. 6.

    \(n^{\frac{1}{2}} \left\{ \widehat{\delta }_{jk}(t) - \delta _{jk}(t) \right\} \)

[1]    \(n^{\frac{1}{2}}(\widehat{{\varvec{\beta }}}_k - {\varvec{\beta }}_k)\)

By a Taylor expansion of \(U_k({\varvec{\beta }})\) around \({\varvec{\beta }}_k\),

$$\begin{aligned} n^{\frac{1}{2}}(\widehat{{\varvec{\beta }}}_k - {\varvec{\beta }}_k)= & {} {\varvec{I}}_{k}^{-1}({\varvec{\beta }}_k) n^{-\frac{1}{2}} \sum _{i=1}^n {\varvec{U}}_{ik}({\varvec{\beta }}_k) + o_p(1), \end{aligned}$$

where \({\varvec{U}}_{ik}({\varvec{\beta }})\) and \({\varvec{I}}_{k}({\varvec{\beta }})\) are as defined in the theorem. The result then follows from standard Martingale theory; e.g., Andersen and Gill (1982) and Fleming and Harrington (1991). Note that the processes \(M_{ijk}(t; {\varvec{\beta }}_1)\), for \(k=1,\ldots ,K\) are martingales with respect to the filtration

$$\begin{aligned} \mathcal{{F}}_{ij}(t) = \sigma \left\{ Y_{ij}(s), {\varvec{Z}}_i; s \in (0,t] \right\} . \end{aligned}$$

[2]    \(n^{\frac{1}{2}} \left\{ \widehat{{\varLambda }}^\#_{0jk}(t)-{\varLambda }^\#_{0jk}(t) \right\} \)

We decompose the quantity as follows,

$$\begin{aligned} n^{\frac{1}{2}} \left\{ \widehat{{\varLambda }}^\#_{0jk}(t)-{\varLambda }^\#_{0jk}(t) \right\}= & {} n^{\frac{1}{2}} \left\{ \widehat{{\varLambda }}^\#_{0jk}(t;\widehat{{\varvec{\beta }}}_k) - \widehat{{\varLambda }}^\#_{0jk}(t;{\varvec{\beta }}_k) \right\} \end{aligned}$$
(6)
$$\begin{aligned}&\quad +\,n^{\frac{1}{2}} \left\{ \widehat{{\varLambda }}^\#_{0jk}(t;{\varvec{\beta }}_k) - {\varLambda }^\#_{0jk}(t;{\varvec{\beta }}_k) \right\} . \end{aligned}$$
(7)

Since \(\widehat{{\varLambda }}_{0jk}^\#(t)\) is the Breslow–Aalen analog of \({\varLambda }_{0jk}^\#(t)\), we adapt results derived for the Breslow–Aalen estimator (Fleming and Harrington 1991). From this perspective, we can write

$$\begin{aligned} (6)= & {} {\varvec{h}}_{jk}^T(t;{\varvec{\beta }}_k) {\varvec{I}}_k({\varvec{\beta }}_k)^{-1}n^{-\frac{1}{2}} \sum _{i=1}^n {\varvec{U}}_{ik}({\varvec{\beta }}_k)+o_p(1), \end{aligned}$$

where the last equality holds by Slutsky’s Theorem. With respect to (7), we can write

$$\begin{aligned} (7)= & {} n^{-\frac{1}{2}} \sum _{i=1} ^n \int _0^t r_{jk}^{(0)} (s;{\varvec{\beta }}_k) ^{-1} dM_{ijk}(s; {\varvec{\beta }}_k) + o_p(1), \end{aligned}$$

since \(R_{jk}^{(0)}(t) {\rightarrow } r_{jk}^{(0)}(t)\) in probability. Putting (6) and (7) together, we get:

$$\begin{aligned}{}[2] = n^{-\frac{1}{2}} \sum _{i=1} ^n {\varPhi }_{ijk}(t;{\varvec{\beta }}_k) + o_p(1) , \end{aligned}$$

where \(\displaystyle {\varPhi }_{ijk}(t;{\varvec{\beta }}) = - {\varvec{h}}_{jk}^T (t;{\varvec{\beta }}) {\varvec{I}}_k({\varvec{\beta }})^{-1} {\varvec{U}}_{ik}({\varvec{\beta }}) + \int _0^t r_{jk}^{(0)} (s;{\varvec{\beta }}) ^{-1} dM_{ijk}(s; {\varvec{\beta }}). \)

[3]    \(n^{\frac{1}{2}} \left\{ \widehat{{\varLambda }}^\#_{ijk}(t)-{\varLambda }^\#_{ijk}(t) \right\} \)

We start with the following decomposition,

$$\begin{aligned}{}[3]= & {} n^{\frac{1}{2}} \left\{ \int _0^t Y _{ij}(s) \exp (\widehat{{\varvec{\beta }}}_k^T {\varvec{Z}}_i) d\widehat{{\varLambda }}^\#_{0jk} (s; \widehat{{\varvec{\beta }}}_k) \right. \nonumber \\&\quad \left. - \int _0^t Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) d\widehat{{\varLambda }}^\#_{0jk} (s; \widehat{{\varvec{\beta }}}_k) \right\} \end{aligned}$$
(8)
$$\begin{aligned}&+\, n^{\frac{1}{2}} \left\{ \int _0^t Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) d\widehat{{\varLambda }}^\#_{0jk} (s; \widehat{{\varvec{\beta }}}_k) \right. \nonumber \\&\quad \left. - \int _0^t Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) d{\varLambda }^\#_{0jk} (s; {\varvec{\beta }}_k) \right\} . \end{aligned}$$
(9)

By a Taylor expansion, then applying Result [1], we can write

$$\begin{aligned} (8)= & {} \int _0^t {\varvec{Z}}_i^T Y_{ij}(s) d{\varLambda }^\#_{ijk} (s; {\varvec{\beta }}_k) {\varvec{I}}_k({\varvec{\beta }}_k)^{-1}n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell k}({\varvec{\beta }}_k) + o_p(1) , \end{aligned}$$

where the last equality holds by the convergence in probability of \(\widehat{{\varLambda }}^\#_{ijk}(t)\) to \({\varLambda }^\#_{ijk}(t)\). We re-express (9) as

$$\begin{aligned} (9)= & {} \int _0^t Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) \left\{ n^{-\frac{1}{2}} \sum _{\ell =1}^n d{\varPhi }_{\ell jk} (t;{\varvec{\beta }}_k)\right\} + o_p(1), \end{aligned}$$

by incorporating Result [2], where we define

$$\begin{aligned} d{\varPhi }_{ijk}(t;{\varvec{\beta }}_k)= & {} \left[ -\overline{{\varvec{z}}}_j(s;{\varvec{\beta }}_k) d{\varLambda }_{0jk} (s;{\varvec{\beta }}_k) \right] ^T {\varvec{I}}_k({\varvec{\beta }}_k)^{-1}{\varvec{U}}_{ik}({\varvec{\beta }}_k) \\&+\, r_{jk}^{(0)} (s;{\varvec{\beta }}_k) ^{-1} dM_{ijk}(s; {\varvec{\beta }}_k). \end{aligned}$$

Combining (8) and (9), then further reorganizing, we obtain

$$\begin{aligned}{}[3]= & {} {\varvec{D}}_{ijk}^T(t;{\varvec{\beta }}_k) {\varvec{I}}_{k}({\varvec{\beta }}_k)^{-1} n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell k}({\varvec{\beta }}_k) + n^{-\frac{1}{2}} \sum _{\ell =1}^n J_{i\ell jk} (t;{\varvec{\beta }}_k), \end{aligned}$$

where we let

$$\begin{aligned} {\varvec{D}}_{ijk}(t;{\varvec{\beta }})= & {} \int _0^t \left\{ {\varvec{Z}}_i -\overline{{\varvec{z}}}_j(s;{\varvec{\beta }}) \right\} d{\varLambda }^\#_{ijk}(s;{\varvec{\beta }}) \\ J_{i\ell jk} (t;{\varvec{\beta }})= & {} \int _0^t Y _{ij}(s) \cdot \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) r_{jk}^{(0)} (s;{\varvec{\beta }}) ^{-1} dM_{\ell jk}(s; {\varvec{\beta }}). \end{aligned}$$

[4]   \(n^{\frac{1}{2}}\left\{ \widehat{S}_{ij}(t)-S_{ij}(t) \right\} \)

We decompose [4] as follows,

$$\begin{aligned}{}[4]= & {} - \sum _{m=1}^K S_{ij}(t) n^{-1/2} \left\{ \widehat{{\varLambda }}^\#_{ijm}(t) - {\varLambda }^\#_{ijm}(t) \right\} , \end{aligned}$$

due to the Functional Delta Method, combined with the convergence, \(e^{-\widehat{{\varLambda }}^\#_{ijm}(s;\widehat{{\varvec{\beta }}}_m)} \rightarrow e^{-{\varLambda }^\#_{ijm}(s;{\varvec{\beta }}_m)}\), by continuity. Using Result [3], we then obtain

$$\begin{aligned}{}[4]= & {} -S_{ij}(t) \sum _{m=1}^K \left\{ {\varvec{D}}_{ijm}^T(t;{\varvec{\beta }}_m) {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1} n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell m}({\varvec{\beta }}_m) \right. \\&\left. +\, n^{-\frac{1}{2}} \sum _{\ell =1}^n J_{i\ell jm} (t;{\varvec{\beta }}_m) \right\} . \end{aligned}$$

[5]    \(n^{\frac{1}{2}} \left\{ \widehat{F}_{ijk}(t) - F_{ijk}(t)\right\} \)

We use the following decomposition,

$$\begin{aligned}{}[5]= & {} n^{\frac{1}{2}} \left\{ \int _0^t \widehat{S}_{ij}(s; \widehat{{\varvec{\beta }}}) d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) - \int _0^t S_{ij}(s; {\varvec{\beta }}) d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) \right\} \end{aligned}$$
(10)
$$\begin{aligned}&+\, n^{\frac{1}{2}} \left\{ \int _0^t S_{ij}(s; {\varvec{\beta }}) d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) - \int _0^t S_{ij}(s; {\varvec{\beta }}) d{\varLambda }^\#_{ijk}(s;{\varvec{\beta }}_k) \right\} , \end{aligned}$$
(11)

where \({\varvec{\beta }}^T = [{\varvec{\beta }}_1^T, \ldots , {\varvec{\beta }}_K^T]\). Note that Eq. (10) will eventually give rise to \(\phi _{i\ell jk}^1(t, {\varvec{\beta }}), \phi _{i\ell jk}^2(t, {\varvec{\beta }})\) as defined in Theorem 2, while (11) will give rise to \(\phi _{i\ell jk}^3(t, {\varvec{\beta }})\) and \(\phi _{i\ell jk}^4(t, {\varvec{\beta }})\). We can write (10) as

$$\begin{aligned} (10)= & {} \int _0^t n^{\frac{1}{2}} \left[ \widehat{S}_{ij}(s; \widehat{{\varvec{\beta }}})-S_{ij}(s; {\varvec{\beta }})\right] d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) \nonumber \\= & {} - \sum _{m=1}^K \int _0^t S_{ij}(s) {\varvec{D}}_{ijm}^T (s;{\varvec{\beta }}_m) d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1} n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell m}({\varvec{\beta }}_m) \nonumber \\\end{aligned}$$
(12)
$$\begin{aligned}&- \quad n^{-\frac{1}{2}} \sum _{m=1}^K \int _0^t S_{ij}(s) \sum _{\ell =1}^n J_{i\ell jm} (s;{\varvec{\beta }}_m) d\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k), \end{aligned}$$
(13)

where we have used Result [4]. Focusing on (12), we have,

$$\begin{aligned} (12) = - \sum _{m=1}^K \int _0^t {\varvec{D}}_{ijm}^T (s;{\varvec{\beta }}_m) dF_{ijk}(s) \ {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1}n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell m}({\varvec{\beta }}_m) + o_p(1), \end{aligned}$$

by the fact that \(\widehat{{\varLambda }}^\#_{ijk}(s;{\varvec{\beta }}_k) {\rightarrow } {\varLambda }^\#_{ijk}(s;{\varvec{\beta }}_k) \), and \(\widehat{{\varvec{\beta }}}_k {\rightarrow } {\varvec{\beta }}_k \) and so, by the CMT, \(\widehat{{\varLambda }}^\#_{ijk}(s;\widehat{{\varvec{\beta }}}_k) {\rightarrow } {\varLambda }^\#_{ijk}(s;{\varvec{\beta }}_k). \) Therefore, from (12), define

$$\begin{aligned} \phi _{i\ell jk}^1(t, {\varvec{\beta }})= & {} \sum _{m=1}^K \left\{ \int _0^t \left\{ {\varvec{Z}}_i -\overline{{\varvec{z}}}_j(u;{\varvec{\beta }}_k) \right\} ^T F_{ijk}(u) \right. \\&\left. - F_{ijk}(t) \int _0^t \left\{ {\varvec{Z}}_i -\overline{{\varvec{z}}}_j(u;{\varvec{\beta }}_k) \right\} ^T d{\varLambda }^\#_{ijk}(u;{\varvec{\beta }}_k) \right\} {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1} {\varvec{U}}_{\ell m}({\varvec{\beta }}_m). \end{aligned}$$

Using analogous arguments, we can write

$$\begin{aligned} (13)= & {} -n^{-\frac{1}{2}} \sum _{m=1}^K \sum _{\ell =1}^n \left\{ F_{ijk}(t) \int _0^t Y _{ij}(u) \exp ({\varvec{\beta }}_m^T {\varvec{Z}}_i) r_{jk}^{(0)} (u;{\varvec{\beta }}_m) ^{-1} dM_{\ell jm}(u; {\varvec{\beta }}_m) \right. \\&\left. - \int _0^t F_{ijk}(u) Y _{ij}(u) \exp ({\varvec{\beta }}_m^T {\varvec{Z}}_i) r_{jk}^{(0)} (u;{\varvec{\beta }}_m) ^{-1} dM_{\ell jm}(u; {\varvec{\beta }}_m) \right\} , \end{aligned}$$

due to previously described properties of \(\widehat{{\varLambda }}^\#_{ijk}(s;{\varvec{\beta }}_k)\) and \(\widehat{{\varvec{\beta }}}_k\). Thus, from (13) define:

$$\begin{aligned} \phi _{i\ell jk}^2(t, {\varvec{\beta }}_1)&= - \sum _{m=1}^K \int _0^t \left\{ F_{ijk}(t) - F_{ijk}(u) \right\} \ Y _{ij}(u) \exp ({\varvec{\beta }}_m^T {\varvec{Z}}_i) r_{jk}^{(0)} (u;{\varvec{\beta }}_m) ^{-1}\\&\quad d M_{\ell jm}(u;{\varvec{\beta }}_m). \end{aligned}$$

Now shifting attention to (11), we obtain

$$\begin{aligned} (11)= & {} \left\{ \int _0^t S_{ij}(s; {\varvec{\beta }}) d{\varvec{D}}_{ijk}^T (s;{\varvec{\beta }}_k) \right\} \ {\varvec{I}}_{k}({\varvec{\beta }}_k)^{-1} n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell k}({\varvec{\beta }}_k) \end{aligned}$$
(14)
$$\begin{aligned}&\quad + \,n^{-\frac{1}{2}} \int _0^t S_{ij}(s; {\varvec{\beta }}) \sum _{\ell =1}^n dJ_{i\ell jk} (s;{\varvec{\beta }}_k), \end{aligned}$$
(15)

through Result [3]. We can then write

$$\begin{aligned} (14)= \left\{ \int _0^t S_{ij}(s; {\varvec{\beta }}) \left[ {\varvec{Z}}_i-\overline{{\varvec{z}}}_j(s;{\varvec{\beta }}_k)\right] ^T d{\varLambda }^\#_{ijk} (s;{\varvec{\beta }}_k) \right\} {\varvec{I}}_{k}({\varvec{\beta }}_k)^{-1} n^{-\frac{1}{2}} \sum _{\ell =1}^n {\varvec{U}}_{\ell k}({\varvec{\beta }}_k) \end{aligned}$$

and, correspondingly, we define

$$\begin{aligned} \phi _{i\ell jk}^3(t, {\varvec{\beta }}) = \left\{ \int _0^t S_{ij}(s; {\varvec{\beta }}) \left[ {\varvec{Z}}_i-\overline{{\varvec{z}}}_j(s;{\varvec{\beta }}_k)\right] ^T d{\varLambda }^\#_{ijk} (s;{\varvec{\beta }}_k) \right\} {\varvec{I}}_{k}({\varvec{\beta }}_k)^{-1} {\varvec{U}}_{\ell k}({\varvec{\beta }}_k). \end{aligned}$$

We can re-express (15) as follows,

$$\begin{aligned} (15)= n^{-\frac{1}{2}} \sum _{\ell =1}^n \int _0^t S_{ij}(s; {\varvec{\beta }}) Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) r_{jk}^{(0)} (s;{\varvec{\beta }}_k) ^{-1} dM_{ljk}(s; {\varvec{\beta }}_k), \end{aligned}$$

and, correspondingly redefine

$$\begin{aligned} \phi _{i\ell jk}^4(t, {\varvec{\beta }}) = \int _0^t S_{ij}(s; {\varvec{\beta }}_1) Y _{ij}(s) \exp ({\varvec{\beta }}_k^T {\varvec{Z}}_i) r_{jk}^{(0)} (s;{\varvec{\beta }}_k) ^{-1} dM_{\ell jk}(s; {\varvec{\beta }}_k). \end{aligned}$$

Combining results derived in this subsection, we obtain,

$$\begin{aligned} n^{\frac{1}{2}} \left\{ \widehat{F}_{ijk}(t) - F_{ijk}(t)\right\} = n^{-\frac{1}{2}} \sum _{\ell =1}^n \left\{ \sum _{d=1}^4 \phi _{i\ell jk}^d(t, {\varvec{\beta }}) \right\} + o_p(1), \end{aligned}$$

where the \(\sum _{d=1}^4 \phi _{i\ell jk}^d(t, {\varvec{\beta }})\) are asymptotically independent and identically distributed variates with mean 0.

[6]    \( n^{\frac{1}{2}} \left\{ \widehat{\delta }_{jk}(t) - \delta _{jk}(t) \right\} \)

We now complete the proof by averaging over \(i = 1, \ldots , n\) to obtain the limiting distribution of the proposed estimator. Setting \(n_j = \sum _{i=1}^n A_{ij}\) and \(p_j = E[A_{ij}]\), we have

$$\begin{aligned}{}[6]= & {} \frac{1}{n_j}\sum _{i=1}^{n} A_{ij} \left\{ n^{-\frac{1}{2}} \sum _{\ell =1}^n \left[ \sum _{d=1}^4 \phi _{i\ell jk}^d(t, {\varvec{\beta }}) - \frac{1}{n} \sum _{r=1}^J \left\{ \sum _{d=1}^4 \phi _{i\ell rk}^d(t, {\varvec{\beta }}) \right\} n_r \right] \right\} \nonumber \\= & {} n^{-\frac{1}{2}} \sum _{\ell =1}^n \left\{ \sum _{d=1}^4 \left[ \frac{1}{n_j}\sum _{i=1}^{n} A_{ij} \phi _{i\ell jk}^d(t, {\varvec{\beta }})\,-\,\frac{1}{n_j}\sum _{i=1}^{n} A_{ij} \frac{1}{n} \sum _{r=1}^J \phi _{i\ell rk}^d(t, {\varvec{\beta }}) n_r \right] \right\} .\nonumber \\ \end{aligned}$$
(16)

Focusing on each component in (16), we have the following for the expression involving \(\phi ^1_{i\ell jk}(t;{\varvec{\beta }})\),

$$\begin{aligned}&\frac{1}{n_j}\sum _{i=1}^{n} A_{ij} \phi ^1_{i\ell jk}(t;{\varvec{\beta }}) \\&\quad = - \frac{1}{p_j} E \left[ \sum _{m=1}^K A_{ij} \int _0^t {\varvec{D}}_{ijm}^T (s;{\varvec{\beta }}_m) dF_{ijk}(s;{\varvec{\beta }}_k) \right] {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1} {\varvec{U}}_{\ell m}({\varvec{\beta }}_m) \\&\quad = \phi _{\ell jk}^1 (t;{\varvec{\beta }}), \end{aligned}$$

since \(n_j/n {\rightarrow } p_j\) by the Weak Law of Large Numbers (WLLN), continuity, and Slutsky’s Theorem. The simplification for the term involving \(\phi ^3_{i\ell jk}(t;{\varvec{\beta }}) \) unfold in a similar way. The term involving \(\phi ^2_{i\ell jk}(t;{\varvec{\beta }})\) can be written as the following:

$$\begin{aligned}&\frac{1}{n_j}\sum _{i=1}^{n} A_{ij} \phi ^2_{i\ell jk}(t;{\varvec{\beta }}) \\&\quad = - \sum _{m=1}^K \int _0^t \left[ \frac{1}{p_j} \frac{1}{n} \sum _{i=1}^{n} A_{ij} \left\{ F_{ijk}(t) \right. \right. \\&\qquad \left. \left. -\,F_{ijk}(u) \right\} Y _{ij}(u) \exp ({\varvec{\beta }}_m^T {\varvec{Z}}_i) r_{jk}^{(0)} (u;{\varvec{\beta }}_m) ^{-1} \right] dM_{\ell jm}(u; {\varvec{\beta }}_m) \\&\quad = \phi _{\ell jk}^2(t;{\varvec{\beta }}), \end{aligned}$$

by the WLLN, continuity, and Slutsky’s Theorem. The term involving \(\phi ^4_{i\ell jk}(t;{\varvec{\beta }}) \) unfold in a similar way. The term involving \(\phi ^1_{i\ell rk}(t;{\varvec{\beta }})\) can be written as the following:

$$\begin{aligned}&\frac{1}{n_j}\sum _{i=1}^{n} \sum _{m=1}^K A_{ij} \left\{ \frac{1}{n} \sum _{r=1}^J \phi ^1_{i\ell rk}(t;{\varvec{\beta }}) n_r \right\} \\&\quad = - \frac{1}{p_j} \sum _{r=1}^J p_r E \left[ \sum _{m=1}^K A_{ij} \int _0^t {\varvec{D}}_{irm}^T (s;{\varvec{\beta }}_m) dF_{irk}(s;{\varvec{\beta }}_k) \right] {\varvec{I}}_{m}({\varvec{\beta }}_m)^{-1} {\varvec{U}}_{\ell m}({\varvec{\beta }}_m) \\&\quad = \phi _{\ell k}^1(t;{\varvec{\beta }}). \end{aligned}$$

The term involving \(\phi ^3_{i\ell rk}(t;{\varvec{\beta }})\) can be expressed in a similar way. The term involving \(\phi ^2_{i\ell rk}(t;{\varvec{\beta }})\) can be written as,

$$\begin{aligned}&\frac{1}{n_j}\sum _{i=1}^{n} \sum _{m=1}^K A_{ij} \left\{ \frac{1}{n} \sum _{r=1}^J \phi ^3_{i\ell rk}(t;{\varvec{\beta }}) \cdot n_r \right\} \\&\quad = \sum _{m=1}^K \int _0^t \sum _{r=1}^J \frac{1}{p_j} p_r E \left[ A_{ij} \left\{ F_{irk}(t) -F_{irk}(u) \right\} Y _{ir}(u) \right. \\&\quad \left. \times \exp ({\varvec{\beta }}_m^T {\varvec{Z}}_i) r_{rk}^{(0)} (u;{\varvec{\beta }}_m) ^{-1} \right] dM_{\ell rm}(u; {\varvec{\beta }}_m) \\&\quad = \phi _{\ell k}^2(t;{\varvec{\beta }}). \end{aligned}$$

The term involving \(\phi ^4_{i\ell rk}(t;{\varvec{\beta }})\) can be expressed analogously. Therefore, we can write

$$\begin{aligned}{}[6] = n^{-\frac{1}{2}} \sum _{\ell =1}^n \left\{ \sum _{d=1}^4 \left( \phi _{\ell jk}^d(t;{\varvec{\beta }}) + \phi _{\ell k}^d (t;{\varvec{\beta }}) \right) \right\} . \end{aligned}$$
(17)

All summands across \(l\) have mean 0 since the \(\phi \)’s have mean 0. If we apply the Functional Central Limit Theorem to [6], where each component is independent across \(l\), we have

$$\begin{aligned} V \left( n^{\frac{1}{2}} \left\{ \widehat{\delta }_{jk}(t) - \delta _{jk}(t) \right\} \right) = E \left[ \left\{ \sum _{d=1}^4 \left( \phi _{\ell jk}^d (t;{\varvec{\beta }})- \phi _{\ell k}^d(t;{\varvec{\beta }}) \right) \right\} ^2 \right] . \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Schaubel, D.E. Comparing center-specific cumulative incidence functions. Lifetime Data Anal 22, 17–37 (2016). https://doi.org/10.1007/s10985-015-9324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9324-1

Keywords

Navigation