Skip to main content
Log in

Regression analysis of informative current status data with the additive hazards model

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bickel PJ, Kwon J (2001) Inference for semiparametric models: some questions and an answer. Stat Sin 11:863–960

    MATH  MathSciNet  Google Scholar 

  • Chen X, Fan Y, Tsyrennikov V (2006) Efficient estimation of semiparametric multivariate copula models. J Am Stat Assoc 101:1228–1240

    Article  MATH  MathSciNet  Google Scholar 

  • Chen L, Sun J (2009) A multiple imputation approach to the analysis of current status data with the additive hazards model. Commun Stat Theory Methods 38:1009–1018

    Article  MATH  Google Scholar 

  • Chen MH, Tong X, Sun J (2009) A frailty model approach for regression analysis of multivariate current status data. Stat Med 28:3424–3426

    Article  MathSciNet  Google Scholar 

  • Chen CM, Lu TFC, Chen MH, Hsu CM (2012a) Semiparametric transformation models for current status data with informative censoring. Biom J 54:641–656

    Article  MATH  MathSciNet  Google Scholar 

  • Chen DGD, Sun J, Peace K (2012b) Interval-censored time-to-event data: methods and applications. Chapman & Hall/CRC

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Book  MATH  Google Scholar 

  • Huang X, Wolfe RA (2002) A frailty model for informative censoring. Biometrics 58:510–520

    Article  MATH  MathSciNet  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Keiding N (1991) Age-specific incidence and prevalence: a statistical perspective (with discussion). J R Stat Soc A 154:371–412

    Article  MATH  MathSciNet  Google Scholar 

  • Kulich M, Lin DY (2000) Additive hazards regression with covariate measurement error. J Am Stat Assoc 95:238–248

    Article  MATH  MathSciNet  Google Scholar 

  • Lagakos SW, Louis TA (1988) Use of tumor lethality to interpret tumorgenicity experiments lacking causing-of-death data. Appl Stat 37:169–179

    Article  Google Scholar 

  • Li J, Wang C, Sun J (2012) Regression analysis of clustered interval-censored failure time data with the additive hazards model. J Nonparametr Stat 24:1041–1050

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Oakes D, Ying Z (1998) Additive hazards regression with current status data. Biometrika 85:289–298

    Article  MATH  MathSciNet  Google Scholar 

  • Lu M, Zhang Y, Huang J (2007) Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94:705–718

    Article  MATH  MathSciNet  Google Scholar 

  • Martinussen T, Scheike TH (2002) Efficient estimation in additive hazards regression with current status data. Biometrika 89:649–658

    Article  MATH  MathSciNet  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  • Ramsay JO (1988) Monotone regression splines in action. Stat Sci 3:425–441

    Article  Google Scholar 

  • Schumaker LL (1981) Spline functions: basic theory. Wiley, New York

    MATH  Google Scholar 

  • Shen X, Wong WH (1994) Convergence rate of sieve estimates. Ann Stat 22:580–615

    Article  MATH  MathSciNet  Google Scholar 

  • Shorack GR (2000) Probability for statisticians. Springer, New York

    MATH  Google Scholar 

  • Shen X (1997) On methods of sieves and penalization. Ann Stat 25:2555–2591

    Article  MATH  Google Scholar 

  • Sun J (2006) The statistical analysis of interval-censored failure time data. Springer, New York

    MATH  Google Scholar 

  • Sun L, Park D, Sun J (2006) The additive hazards model for recurrent gap times. Stat Sin 16:919–932

    MATH  MathSciNet  Google Scholar 

  • Titman AC (2013) A pool-adjacent-violators type algorithm for non-parametric estimation of current status data with dependent censoring. Lifetime Data Anal. Published Online: 22 June 2013

  • Tong X, Hu T, Sun J (2012) Efficient estimation for additive hazards regression with bivariate current status data. Sci China Math 55:763–774

    Article  MATH  MathSciNet  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York

    Book  MATH  Google Scholar 

  • Wang L, Sun J, Tong X (2010) Regression analysis of case II interval-censored failure time data with the additive hazards model. Stat Sin 20:1709–1723

    MATH  MathSciNet  Google Scholar 

  • Wang C, Sun J, Sun L, Zhou J, Wang D (2012) Nonparametric estimation of current status data with dependent censoring. Lifetime Data Anal 18:434–445

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Sun J, Sun L (2005) Statistical analysis of current status data with informative observation times. Stat Med 24:1399–1407

    Article  MathSciNet  Google Scholar 

  • Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risk based on an assumed copula. Biometrika 82:127–138

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou X, Sun L (2003) Additive hazards regression with missing censoring information. Stat Sin 13:1237–1258

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the guest editors and two reviewers for their constructive and helpful comments and suggestions. This work was partly supported by the Humanities and Social Science Research Project of Ministry of Education of P. R. China (11YJAZH125) to the Shishun Zhao, the NSFC of P. R. China (11371062) to the Tao Hu, and NSF and NIH Grants to the Jianguo Sun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Sun.

Appendix: Proofs of asymptotic consistency and normality

Appendix: Proofs of asymptotic consistency and normality

In this Appendix, we will sketch the proofs for the asymptotic consistency and normality of the proposed estimators described in Sect. 3. First we will give the proofs for the consistency results given in (4) and (5) and then the proof for the asymptotic result described in (6). The following are the regularity conditions needed for these results.

  1. (A1)

    The covariates \(Z_i\)’s have a bounded support.

  2. (A2)

    The copula function \(M ( \cdot ,\cdot )\) has bounded first order partial derivatives and both the partial derivatives are Lipschitz.

  3. (A3)

    Assume that \(\displaystyle \inf _{{d(\theta ,\theta _0)<\epsilon }}Pl(\theta ,X)>Pl(\theta _0,X).\)

  4. (A4)

    The \(m\)th derivative of \(\varLambda _k(\cdot )\), denoted by \(\varLambda _k^{(m)}(\cdot )\), is Holder continuous such that \(|\varLambda _k^{(m)}(t_1)-\varLambda _k^{(m)}(t_2)| \le M|t_1-t_2|^\eta \) for some \(\eta \in (0, 1]\) and all \(t_1, t_2 \in (l,u)\), \(k=1,2\), where \(0 < l < u < \infty \) and \(M\) are some constants.

  5. (A5)

    The matrix \(E(S_\vartheta S_\vartheta ')\) is finite and positive definite with \(\vartheta =(\beta ',\gamma ')'\), where \(S_\vartheta \) is defined below.

First we will sketch the proof for the result described in (4). For this we suppose that the regularity conditions (A1)–(A4) given above hold and will employ the empirical process theory (van der Vaart and Wellner 1996). Define \(\mathcal {L}_n = \{ l ( \theta , X) : \, \theta \in \varTheta _n \}\). Note that for any \(\theta ^1=(\beta ^1, \gamma ^1, \varLambda _1^1,\varLambda _2^1)\) and \(\theta ^2 = (\beta ^2, \gamma ^2, \varLambda _1^2,\varLambda _2^2)\in \varTheta _n\), it is easy to show that

$$\begin{aligned}&|l(\theta ^1,X)- l(\theta ^2,X)|\\&\quad \le K\big (\Vert \beta ^1-\beta ^2\Vert +\Vert \gamma ^1-\gamma ^2\Vert +\Vert \varLambda _1^1-\varLambda _1^2\Vert _\infty +\Vert \varLambda _2^1-\varLambda _2^2\Vert _\infty \big ) \end{aligned}$$

by the Taylor’s series expansion under conditions (A1) and (A2). Also note that according to the calculation of van der Vaart and Wellner (1996) (p. 94), we have

$$\begin{aligned}&N\Big (\epsilon ,{\mathcal {L}}_n,L_1(P_n)\Big )\\&\le N\Big (\frac{\epsilon }{3M},\mathcal {B},\Vert \cdot \Vert \Big )\cdot N\Big (\frac{\epsilon }{3M_n},\mathcal {M}_n^1,L_\infty \Big )\cdot N\Big (\frac{\epsilon }{3M_n},\mathcal {M}_n^2,L_\infty \Big )\\&\le \Big (\frac{9M}{\epsilon }\Big )^{2p}\cdot \Big (\frac{9M_n^2}{\epsilon }\Big )^{k+k_n}\cdot \Big (\frac{9M_n^2}{\epsilon }\Big )^{k +k_n}\\&\le KM^{2p}M_n^{4(k +k_n)}\epsilon ^{-p_m}, \end{aligned}$$

where \(p_m = 2 p + 2 ( k + k_n)\). It follows from the inequality (31) of Pollard (1984) (p. 31) that

$$\begin{aligned} \displaystyle \sup _{\theta \in \varTheta _n} \big |P_nl(\theta , X)-Pl(\theta , X)\big |\rightarrow 0 \end{aligned}$$
(7)

in probability.

Define \(K_\epsilon =\{\theta : d(\theta , \theta _0)\ge \epsilon , \theta \in \varTheta _n\}\) and let \(M(\theta , X) = -l (\theta , X)\) and

$$\begin{aligned} \zeta _{1n}=\displaystyle \sup _{\theta \in \varTheta _n} |P_nM(\theta , X)-PM(\theta ,X)|,\,\,\zeta _{2n}=P_nM(\theta _0,X)-PM(\theta _0,X), \end{aligned}$$

where \(\theta _0\) denotes the true value of \(\theta \). Then we have

$$\begin{aligned} \inf _{K_\epsilon }PM(\theta ,X)&= \inf _{K_\epsilon }\Big \{P M(\theta ,X)-P_nM(\theta ,X)+P_nM(\theta ,X)\Big \}\nonumber \\&\le \zeta _{1n}+\displaystyle \inf _{K_\epsilon }P_nM(\theta ,X). \end{aligned}$$
(8)

Furthermore, if \(\hat{\theta }_n\in K_\epsilon \), one can show that

$$\begin{aligned} \displaystyle \inf _{K_\epsilon } P_nM(\theta ,X)=P_nM(\hat{\theta }_n,X)\le P_nM(\theta _0,X) = \zeta _{2n}+PM(\theta _0,X). \end{aligned}$$
(9)

It thus follows from the condition (A3) that

$$\begin{aligned} \displaystyle \inf _{K_\epsilon }P M(\theta ,X)-PM(\theta _0,X)=\delta _\epsilon >0 \end{aligned}$$

and (8) and (9) give

$$\begin{aligned} \displaystyle \inf _{K_\epsilon }PM(\theta ,X)\le \zeta _{1n}+\zeta _{2n} + PM(\theta _0,X)=\zeta _n+ PM(\theta _0,X), \end{aligned}$$

where \(\zeta _n=\zeta _{1n}+\zeta _{2n}\). Hence we have that \(\zeta _n \ge \delta _\epsilon \) and furthermore, \(\{\hat{\theta }_n \in K_{\epsilon } \}\subseteq \{\zeta _n \ge \delta _{\epsilon }\}\). Then by using the condition (A1) and the strong law of large numbers, one can show that \(\zeta _{1n} = o(1)\) and \(\zeta _{2n}=o(1)\) almost surely. The consistency result thus follows from \(\cup _{k=1}^{\infty }\cap _{n=k}^{\infty }\{\hat{\theta }_n \in K_{\epsilon } \} \subseteq \cup _{k=1}^{\infty }\cap _{n=k}^{\infty }\{\zeta _n \ge \delta _{\epsilon }\}\).

Now we show the convergence rate result given in (5) and assume that the regularity conditions (A1)–(A4) given above hold. For any \(\eta >0,\) define the class \({\mathcal {F}}_{\eta }=\{l(\theta _{n0},X)-l(\theta ,X): \theta \in \varTheta _n, d(\theta ,\theta _{n0})\le \eta \}\) with \(\theta _{n0}=(\beta _0,\gamma _0, \varLambda _{1n0},\varLambda _{2n0} ).\) Following the calculation of Shen and Wong (1994) (p. 597), we can establish that \(\log N_{[]}(\varepsilon ,{\mathcal {F}}_{\eta },\Vert \cdot \Vert _{2})\le C N\log (\eta /\varepsilon )\) with \(N= 2 ( k +k_n).\) Moreover, some algebraic calculations lead to \(\Vert l(\theta _{n0},X)-l(\theta ,X)\Vert _{2}^2\le C \eta ^2\) for any \(l(\theta _{n0},X)-l(\theta ,X)\in {\mathcal {F}}_{\eta }.\) Therefore it follows from Lemma 3.4.2 of van der Vaart and Wellner (1996) that

$$\begin{aligned} E_P\Vert n^{1/2}(P_n-P)\Vert _{{\mathcal {F}}_{\eta }}\le CJ_{\eta }(\varepsilon ,{\mathcal {F}}_{\eta },\Vert \cdot \Vert _{2}) \biggl \{1+\frac{J_{\eta }(\varepsilon ,{\mathcal {F}}_{\eta }, \Vert \cdot \Vert _{2})}{\eta ^2n^{1/2}}\biggl \}, \end{aligned}$$
(10)

where \(J_{\eta }(\varepsilon ,{\mathcal {F}}_{\eta },\Vert \cdot \Vert _{2})=\int _0^\eta \{1+\log N_{[]}(\varepsilon ,{\mathcal {F}}_{\eta },\Vert \cdot \Vert _{2})\}^{1/2}d\varepsilon \le C N^{1/2}\eta .\)

Note that the right-hand side of (10) gives \(\phi _n(\eta )=C(N^{1/2}\eta +N/n^{1/2})\). Also it is easy to see that \(\phi _n(\eta )/\eta \) decreases in \(\eta \) and \(r_n^2\phi _n(1/r_n)=r_nN^{1/2}+r_n^2N/n^{1/2} <2n^{1/2},\) where \(r_n=N^{-1/2}n^{1/2}=n^{(1-\nu )/2}\) with \(0<\nu <0.5\). Hence we have \(n^{(1-\nu )/2}d(\hat{\theta },\theta _{n0})=O_P(1)\) by Theorem 3.2.5 of van der Vaart and Wellner (1996). This together with \(d(\theta _{n0},\theta _0)=O_p(n^{-r\nu })\) (Lemma A1 in Lu et al. 2007) yields that \(d(\hat{\theta },\theta _0)=O_p(n^{-(1-\nu )/2}+n^{-r\nu })\). The choice of \(\nu =1/(1+2r)\) gives the rate of convergence as \(d(\hat{{\theta }}_n, {\theta }_0) = O_p ( n^{ - r / (1+2r ) } )\) and completes the proof.

Finally we will provide the sketch for the proof of the asymptotic distribution result given in (6). For this, suppose that the regularity conditions (A1)–(A5) given above hold and \(r > 2\). For this, denote \(V\) as the linear span of \(\varTheta _0-\theta _0\) where \(\varTheta _0\) denotes the true parameter space. Let \(l(\theta ,W)\) be the log-likelihood for a sample of size one and \(\delta _n=(n^{-(1-\nu )/2}+n^{-r\nu }).\) For any \(\theta \in \{\theta \in \varTheta _0: \Vert \theta -\theta _0\Vert =O(\delta _n)\},\) define the first order directional derivative of \(l(\theta ,X)\) at the direction \(v\in V\) as

$$\begin{aligned} \dot{l}(\theta ,X)[v]=\frac{dl(\theta +sv,X)}{ds}\Big |_{s=0}, \end{aligned}$$
(11)

and the second order directional derivative as

$$\begin{aligned} \ddot{l}(\theta ,X)[v,\tilde{v}]=\frac{d^2l(\theta +sv+\tilde{s} \tilde{v},X)}{d\tilde{s}ds}\Big |_{s=0}\Big |_{\tilde{s}=0} =\frac{d\dot{l}(\theta +\tilde{s}\tilde{v},X)}{d\tilde{s}}\Big |_{\tilde{s}=0}. \end{aligned}$$

Also define the Fisher inner product on the space \(V\) as

$$\begin{aligned} <v,\tilde{v}>\,\,=P\Big \{\dot{l}(\theta ,X)[v]\dot{l}(\theta ,X)[\tilde{v}]\Big \} \end{aligned}$$

and the Fisher norm for \(v\in V\) as \(\Vert v\Vert ^{1/2}=<v,v>.\) Let \(\bar{V}\) be the closed linear span of \(V\) under the Fisher norm. Then \((\bar{V}, \Vert \cdot \Vert )\) is a Hilbert space.

In addition, define the smooth functional of \(\theta \) as

$$\begin{aligned} \gamma (\theta )=b_1'\beta +b_2'\gamma , \end{aligned}$$

where \(b=(b_1',b_2')'\) is any vector of \(2p\) dimension with \(\Vert b\Vert \le 1.\) For any \(v\in V,\) we denote

$$\begin{aligned} \dot{\gamma }(\theta _0)[v]=\frac{d \gamma (\theta _0+sv)}{ds}\Big |_{s=0}=r(v) \end{aligned}$$

whenever the right hand-side limit is well defined. Note that \(\gamma (\theta )-\gamma (\theta _0)=\dot{\gamma }(\theta _0) [\theta -\theta _0].\) It follows by the Riesz representation theorem that there exists \(v^*\in \bar{V}\) such that \(\dot{\gamma }(\theta _0)[v]=<v^*,v>\) for all \(v \in \bar{V}\) and \(\Vert v^*\Vert ^2=\Vert \dot{\gamma }(\theta _0)\Vert .\)

Let \(\varepsilon _n\) be any positive sequence satisfying \(\varepsilon _n=o(n^{-1/2}).\) For any \(v^*\in \varTheta _0,\) by (A4) and Corollary 6.21 of Schumaker (1981) (p. 227), there exists \(\varPi _nv^*\in \varTheta _n\) such that \(\Vert \varPi _nv^*-v^*\Vert =o(1)\) and \(\delta _n\Vert \varPi _nv^*-v^*\Vert =o(n^{-1/2}).\) Also define \(g[\theta -\theta _0,X]=l(\theta ,X)-l(\theta _0,X)-\dot{l}(\theta ,X)[\theta -\theta _0].\) Then by the definition of \(\hat{\theta },\) we have

$$\begin{aligned} 0&\le P_n[l(\hat{\theta },W)-l(\hat{\theta }\pm \varepsilon _n \varPi _nv^*,W)]\\&= (P_n-P)[l(\hat{\theta },W)-l(\hat{\theta }\pm \varepsilon _n \varPi _nv^*,W)]+P[l(\hat{\theta },W)-l(\hat{\theta }\pm \varepsilon _n \varPi _nv^*,W)]\\&= \pm \varepsilon _n P_n \dot{l}(\theta ,W)[\varPi _nv^*]+(P_n-P)\Big \{g[\hat{\theta }-\theta _0,W] -g[\hat{\theta }\pm \varepsilon _n\varPi _nv^*-\theta _0,W]\Big \}\\&+\, P\Big \{g[\hat{\theta }-\theta _0,W]-g[\hat{\theta }\pm \varepsilon _n\varPi _nv^* -\theta _0,W]\Big \}\\&= \mp \varepsilon _n P_n \dot{l}(\theta ;W)[v^*]\pm \varepsilon _n P_n \dot{l}(\theta ,W)[\varPi _nv^*-v^*]+(P_n-P)\Big \{g[\hat{\theta }-\theta _0,W]\\&-\,g[\hat{\theta }\pm \varepsilon _n\varPi _nv^*-\theta _0,W]\Big \}+ P\Big \{g[\hat{\theta }-\theta _0,W]-g[\hat{\theta }\pm \varepsilon _n\varPi _nv^* -\theta _0,W]\Big \}\\&:= \mp \varepsilon _n P_n \dot{l}(\theta ,W)[v^*]+I_1+I_2+I_3. \end{aligned}$$

Note that for \(I_1\), it follows from Conditions (A1)–(A2), Chebyshev inequality and \(\Vert \varPi _nv^*-v^*\Vert =o(1)\) that \(I_1=\varepsilon _n\times o_p(n^{-1/2}).\) For \(I_2,\) we have

$$\begin{aligned} I_2&= (P_n-P)\Big \{l(\hat{\theta },W)-l(\hat{\theta }\pm \varepsilon _n\varPi _nv^*,W)\pm \varepsilon _n\dot{l}(\theta _0,W)[\varPi _nv^*]\Big \}\\&= \mp \varepsilon _n(P_n-P)\Big \{\dot{l}(\tilde{{\theta }},W) -\dot{l}(\theta _0,W)[\varPi _nv^*]\Big \}, \end{aligned}$$

where \(\tilde{\theta }\) lies between \(\hat{\theta }\) and \(\hat{\theta }\pm \varepsilon _n\varPi _n v^*.\) By Theorem 2.8.3 in of van der Vaart and Wellner (1996), we know that \(\{\dot{l}(\theta ;W)[\varPi _n v^*]: \Vert \theta -\theta _0\Vert =O(\delta _n)\}\) is Donsker class. Therefore, by Theorem 2.11.23 of van der Vaart and Wellner (1996), we have \(I_2=\varepsilon _n\times o_p(n^{-1/2}).\)

For \(I_3\), note that

$$\begin{aligned} P(g[\theta -\theta _0,W])&= P\{l(\theta ,W)-l(\theta _0,W)-\dot{l}(\theta _0,W[\theta -\theta _0])\}\\&= 2^{-1}P\{\ddot{l}(\tilde{\theta },W)[\theta -\theta _0,\theta -\theta _0] -\ddot{l}(\theta _0,W)[\theta -\theta _0,\theta -\theta _0]\}\\&+\,2^{-1} P\{\ddot{l}(\theta _0,W)[\theta -\theta _0,\theta -\theta _0]\}\\&= 2^{-1}P\{\ddot{l}(\theta _0,W)[\theta -\theta _0,\theta -\theta _0]\}+\varepsilon _n\times o_p(n^{-1/2}), \end{aligned}$$

where \(\tilde{\theta }\) lies between \(\theta _0\) and \(\theta \) and the last equation is due to Taylor expansion, (A1)–(A2) and \(r>2.\) Therefore,

$$\begin{aligned} I_3&= -2^{-1}\{\Vert \hat{\theta }-\theta _0\Vert ^2-\Vert \hat{\theta }\pm \varepsilon _n\varPi _nv^*-\theta _0\Vert ^2\}+\varepsilon _n\times o_p(n^{-1/2})\\&= \pm \varepsilon _n <\hat{\theta }-\theta _0,\varPi _nv^*>+2^{-1}\Vert \varepsilon _n\varPi _nv^*\Vert ^2+\varepsilon _n\times o_p(n^{-1/2})\\&= \pm \varepsilon _n <\hat{\theta }-\theta _0,v^*>+2^{-1}\Vert \varepsilon _n\varPi _nv^*\Vert ^2+\varepsilon _n\times o_p(n^{-1/2})\\&= \pm \varepsilon _n <\hat{\theta }-\theta _0,v^*>+\varepsilon _n\times o_p(n^{-1/2}). \end{aligned}$$

In the above, the last equality holds since \(\delta _n\Vert \varPi _nv^*-v^*\Vert =o(n^{-1/2}),\) Cauchy-Schwartz inequality, and \(\Vert \varPi _nv^*\Vert ^2\rightarrow \Vert v^*\Vert ^2.\)

By combing the above facts together with \(P\dot{l}(\theta _0,W[v^*])=0\), one can show that

$$\begin{aligned} 0&\le P_n\{l(\hat{\theta },W)-l(\hat{\theta }\pm \varepsilon _n \varPi _nv^*,W)\}\\&= \mp \varepsilon _nP_n\dot{l}(\theta _0,W)[v^*]\pm \varepsilon _n <\hat{\theta }-\theta _0,v^*>+\varepsilon _n\times o_p(n^{-1/2})\\&= \mp \varepsilon _n(P_n-P)\{\dot{l}(\theta _0,W)[v^*]\}\pm \varepsilon _n <\hat{\theta }-\theta _0,v^*>+\varepsilon _n\times o_p(n^{-1/2}). \end{aligned}$$

Therefore, we have \(\sqrt{n}<\hat{\theta }-\theta _0,v^*>=\sqrt{n}(P_n-P)\{\dot{l}(\theta _0,W)[v^*]\}+o_p(1)\rightarrow N(0,\Vert v^*\Vert ^2)\) by the central limits theorem with the the asymptotic variance being equal to \(\Vert v^*\Vert ^2=\Vert \dot{l}(\theta _0,W)[v^*]\Vert ^2.\) This implies that \(n^{1/2}(\gamma (\hat{\theta })-\gamma (\theta _0))=n^{1/2}<\hat{\theta } -\theta _0,v^*>+o_p(1)\rightarrow N(0,\Vert v^*\Vert ^2)\) in distribution. Furthermore, the semiparametric efficiency can be established by applying the result of Bickel and Kwon (2001) or Theorem 4 in Shen (1997).

For each component \(\vartheta _q,\) \(q=1,2,\ldots ,2p,\) denote by \(\psi ^*_q=(b_{1q}^*,b_{2q}^*)\) the solution to

$$\begin{aligned} \displaystyle \inf _{\psi _q^*}E\Big \{l_\vartheta \cdot e_q-l_{b_1^*}[b_{1q}^*]-l_{b_2^*} [ b_{2q}^*]\Big \}^2, \end{aligned}$$

where \(l_\vartheta =(l_\beta ', l_\gamma ')', \) \(l_{b_1^*}[b_{1q}^*]\) and \(l_{b_2^*}[b_{1q}^*]\) are defined similar to (11). Now let \(\psi ^*=(\psi _1^*,\cdots ,\psi _q^*).\) By the calculations of Chen et al. (2006), we have \(\Vert v^*\Vert ^2=\Vert \dot{\gamma }(\theta _0)\Vert =\sup _{v\in \bar{V}:\Vert v\Vert >0}\frac{|\dot{\gamma }(\theta _0)[v]|}{\Vert v\Vert }=b'\varSigma b,\) where \(\varSigma =E(S_\vartheta S_\vartheta '),\) \(S_\vartheta =\{l_\vartheta -l_{b_1^*}b_1^*-l_{b_2^*}b_2^*\}.\) Now, since \(b'((\hat{\beta }-\beta _0)',(\hat{\gamma }-\gamma _0)')=<\hat{\theta }-\theta _0,v^*>,\) the final results follows from the Cram\(\acute{e}\)r-Wold device (Theorem 3.2 in Chap. 13 of Shorack 2000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Hu, T., Ma, L. et al. Regression analysis of informative current status data with the additive hazards model. Lifetime Data Anal 21, 241–258 (2015). https://doi.org/10.1007/s10985-014-9303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-014-9303-y

Keywords

Navigation