Skip to main content
Log in

How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Abundance and diversity of bumblebees have been declining over the past decades. To successfully conserve bumblebee populations, we need to understand how landscape characteristics affect the quantity and quality of floral resources collected by colonies and subsequently colony performance.

Objectives

We therefore investigated how amount and composition of pollen collected by buff-tailed bumblebee Bombus terrestris colonies was affected by the surrounding landscape (i.e. the proportion of forest, urban, semi-natural habitats) and how they were related to colony growth.

Methods

Thirty B. terrestris colonies were placed at grassland sites differing in surrounding landscape. Colonies were established in spring when availability of flowering plants was highest, and their weight gain was monitored for 1 month. We additionally recorded the quantity and compared plant taxonomic composition and nutritional quality (i.e. amino acid composition) of pollen stored.

Results

Bumblebee colonies varied little in the pollen spectra collected despite differences in surrounding landscape composition. They collected on average 80 % of pollen from woody plants, with 34 % belonging to the genus Acer. Early colony growth positively correlated with total amount of woody pollen and protein collected and decreased with increasing proportions of semi-natural habitats and total amino acid concentrations.

Conclusions

Our results suggest that woody plant species represent highly important pollen sources for the generalist forager B. terrestris early in the season. We further show that colony growth of B. terrestris is predominantly affected by the quantity, not quality, of forage, indicating that several abundant plant species flowering throughout the bumblebees’ foraging season may cover the colonies’ nutritional needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey S, Requier F, Nusillard B, Moliard C, Lagarde N, Roberts S, Potts SG, Roche P, Bouget C (2012) Effects of woody elements on wild bee population in rapeseed field. Effect of distance from forest edge on bee pollinators in oilseed rape fields depends on life history traits. 6ème rencontre du Groupe des Entomologistes Forestiers Francophone. Epernay, France

  • Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16(3):331–343

    Article  Google Scholar 

  • Barker RJ, Lehner Y (1972) Free amino acids in thoraces of flown honey bees, Apis mellifera L. (Hymenoptera: Apidae). Comp Biochem Physiol B: Comp Biochem 43(1):163–169

    CAS  Google Scholar 

  • Bartoń K (2016) MuMIn: multi-model inference. R package version 1.1.5.6

  • Beug H-J (ed) (2004) Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich

    Google Scholar 

  • Biesmeijer JC, Roberts SP, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, van Marwijk B, van Deursen K, Punt W, Sommeijer MJ (1992) Pollen sources for Apis mellifera L. (Hymenoptera, Apidae) in Surinam, based on pollen grain volume estimates [neotropics]. Apidologie 23(3):245–256

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Boselli E, Caboni MF, Sabatini AG, Marcazzan GL, Lercker G (2003) Determination and changes of free amino acids in royal jelly during storage. Apidologie 34(2):129–138

    Article  CAS  Google Scholar 

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41(3):278–294

    Article  Google Scholar 

  • Brunner FS, Schmid-Hempel P, Barribeau SM (2014) Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proc R Soc Lond B: Biol Sci 281:1786

    Article  Google Scholar 

  • Carvell C, Osborne JL, Bourke AFG, Freeman SN, Pywell RF, Heard MS (2011) Bumble bee species’ responses to a targeted conservation measure depend on landscape context and habitat quality. Ecol Appl 21(5):1760–1771

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF (ed) (1998) The insects: structure and function. Cambridge University Press, New York

    Google Scholar 

  • Clough Y, Ekroos J, Baldi A, Batary P, Bommarco R, Gross N, Holzschuh A, Hopfenmuller S, Knop E, Kuussaari M, Lindborg R, Marini L, Ockinger E, Potts SG, Poyry J, Roberts SP, Steffan-Dewenter I, Smith HG (2014) Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol Lett 17(9):1168–1677

    Article  PubMed  Google Scholar 

  • Crone EE, Williams NM (2016) Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queenproduction. Ecol Lett 19(4):460–468

    Article  PubMed  Google Scholar 

  • De Groot AP (1953) Protein and amino acid requirements of the honey bee (Apis mellifica L.). Physiol Comp Oecol 3:197–285

    Google Scholar 

  • Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet J-L, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 8(8):e72016

  • Dormann CF, Fruend J, Bluethgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Eltz T, Brühl CA, Van der Kaars S, Chey VK, Linsenmair KE (2001) Pollen foraging and resource partitioning of stingless bees in relation to flowering dynamics in a Southeast Asian tropical rainforest. Insectes Soc 48(3):273–279

  • Erdtman, G (Ed.) (1954). An Introduction to Pollen Analysis. (Chronica Botanica.)

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl Ecol 11(6):473–485

  • Génissel A, Aupinel P, Bressac C, Tasei J-N, Chevrier C (2002) Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol Exp Appl 104(2–3):329–336

    Article  Google Scholar 

  • Goulson D (ed) (2010) Bumblebees: behaviour, ecology, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Goulson D, Hughes W, Derwent L, Stout J (2002) Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130(2):267–273

  • Goulson D, Lepais O, O’Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Darvill B (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47(6):1207–1215

  • Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957

    Article  PubMed  Google Scholar 

  • Hanley ME, Awbi AJ, Franco M (2014) Going native? Flower use by bumblebees in English urban gardens. Ann Bot 113(5):799–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydak MH (1970) Honey bee nutrition. Annu Rev Entomol 15(1):143–156

    Article  Google Scholar 

  • Heinrich B (ed) (1996) The thermal warriors: strategies of insect survival. Havard University Press, Cambridge

    Google Scholar 

  • Hesse M, Waha M (1989) A new look at the acetolysis method. Plant Syst Evol 163(3–4):147–152

    Article  Google Scholar 

  • Hines HM, Hendrix SD (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: effects of local and landscape floral resources. Environ Entomol 34(6):1477–1484

    Article  Google Scholar 

  • Hülsmann M, von Wehrden H, Klein A-M, Leonhardt SD (2015) Plant diversity and composition compensate for negative effects of urbanization on foraging bumble bees. Apidologie 46(6):760–770

  • Jost L (2006) Entropy and diversity. Oikos 113(2):363–375

    Article  Google Scholar 

  • Kleijn D, Raemakers I (2008) A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 89(7):1811–1823

    Article  PubMed  Google Scholar 

  • Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7(3):201–214

    Article  Google Scholar 

  • Klein A-M, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol 49(3):723–732

  • Knight ME, Osborne JL, Sanderson RA, Hale RJ, Martin AP, Goulson D (2009) Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv Divers 2(2):116–124

  • Kratochwil A, Kohl A (1988) Pollensammel-Präferenzen bei Hummeln—ein Vergleich mit der Honigbiene. Mitt Badischen Landesver Naturkunde Naturschutz 14(3):617–715

    Google Scholar 

  • Lefcheck JS (2015) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–579

    Article  Google Scholar 

  • Leonhardt SD, Blüthgen N (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43(4):449–464

    Article  Google Scholar 

  • Mänd M, Mänd R, Williams I (2002) Bumblebees in the agricultural landscape of Estonia. Agric Ecosyst Environ 89(1):69–76

    Article  Google Scholar 

  • Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45(7):2768–2773

    Article  CAS  Google Scholar 

  • Mattila H, Otis G (2006) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. J Econ Entomol 99(3):604–613

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: Spatial Pattern Analysis Program for Categorical Maps, Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Michener CD (ed) (2007). The bees of the world. Johns Hopkins University Press, Baltimore, p 992

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight. Amino Acids 18(2):157–175

    Article  CAS  PubMed  Google Scholar 

  • Neumayer J, Paulus HF (1999) Ökologie alpiner Hummeleigenschaften: Blütenbesuch, Ressourcenaufteilung und Energiehaushalt. Unters Ostalpen Österr Stapfia 67:5–246

    Google Scholar 

  • Odoux J-F, Feuillet D, Aupinel P, Loublier Y, Tasei J-N, Mateescu C (2012) Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies. Apidologie 43(5):561–575

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Vienna. http://www.R-project.org

  • Regali A, Rasmont P (1995) New bioassays to evaluate diet in orphan colonies of Bombus terrestris. Apidologie 26(4):273–281

    Article  Google Scholar 

  • Requier F (2013) Dynamique spatio-temporelle des ressources florales et ecologie de l’’beille domestique en paysage agricole intensif. Universite de Poitiers

  • Requier F, Odoux J-F, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25(4):881–890

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222(1–4):187–209

    Article  CAS  Google Scholar 

  • Roulston TH, Cane JH (2002) The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol Ecol 16(1):49–65

    Article  Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen–pistil interactions, or phylogeny? Ecol Monogr 70(4):617–643

    Google Scholar 

  • Scheper J, Reemer M, van Kats R, Ozinga WA, van der Linden GT, Schaminée JH, Siepel H, Kleijn D (2014) Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proc Natl Acad Sci USA 111(49):17552–17557

  • Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83(5):1421–1432

  • Tasei J-N, Aupinel P (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39(4):397–409

    Article  CAS  Google Scholar 

  • Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9(1):e86209

  • von der Ohe K, von der Ohe W (eds) (2007) Celle Melissopalynologische Sammlung. Celle, LAVES – Institut für Bienenkunde

    Google Scholar 

  • Weiner CN, Hilpert A, Werner M, Linsenmair KE, Blüthgen N (2010) Pollen amino acids and flower specialisation in solitary bees. Apidologie 41(4):476–487

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6(11):961–965

    Article  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecol Entomol 31(4):389–394

    Article  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J Appl Ecol 46(1):187–193

    Article  Google Scholar 

  • Williams NM, Regetz J, Kremen C (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93(5):1049–1058

    Article  PubMed  Google Scholar 

  • Williams PH (1986) Environmental change and the distributions of British bumble bees (Bombus Latr.). Bee world 67(2):50–61

    Article  Google Scholar 

  • Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem 37:101–125

Download references

Acknowledgments

We thank Christoph Scherber for his help with structural equation modeling. We thank Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. We thank Simone Pfeiffer, Maren Gleisberg, Martin Fellendorf, Ralf Lauterbach, Martin Gorke, Dominik Hessenmöller, Gunnar Korte, Claudia Seilwinder, Jörg Hailer, Ulf Pommer, and various helpers of the local management teams for their work in maintaining the plot and project infrastructure. Fieldwork permits were given by the responsible state environmental offices of Baden-Württemberg (according to § 72 BbgNatSchG). We are further grateful for the comments of two anonymous reviewers which helped to substantially improve the manuscript. This work was supported by grants from the German Research Foundation (DFG Projects: EL 249/7-1 and LE 2750/1-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wiebke Kämper or Sara Diana Leonhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kämper, W., Werner, P.K., Hilpert, A. et al. How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris . Landscape Ecol 31, 2245–2258 (2016). https://doi.org/10.1007/s10980-016-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0395-5

Keywords

Navigation