Skip to main content

Advertisement

Log in

Turnover of acetylcholine receptors at the endplate revisited: novel insights into nerve-dependent behavior

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The turnover of nicotinic acetylcholine receptors (AChR) is a critical factor that determines function and safety of neuromuscular transmission at the nerve-muscle synapses, i.e. neuromuscular junctions (NMJs). Previously, three different populations of AChRs exhibiting distinct stereotypic and activity-dependent half-life values were observed in mouse muscles. To address AChR turnover in more detail, we here employed a recently developed longitudinal radioiodine assay that is based on repetitive measurements of radio emission from the same animals over long periods of time in combination with systematic variation of the time elapsed between AChR pulse-labeling and muscle denervation. Modeling of the data revealed profiles of AChR de novo synthesis and receptor incorporation into the postsynaptic membrane. Furthermore, decay of pre-existing AChRs upon denervation showed a peculiar pattern corroborating earlier findings of a two-step stabilization of AChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaaboune M, Culican SM, Turney SG, Lichtman JW (1999) Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286:503–507

  • Andreose JS, Xu R, Lomo T et al (1993) Degradation of two AChR populations at rat neuromuscular junctions: regulation in vivo by electrical stimulation. J Neurosci 13:3433–3438

    CAS  PubMed  Google Scholar 

  • Berg DK, Hall ZW (1975) Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture. J Physiol 252:771–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bevan S, Steinbach JH (1983) Denervation increases the degradation rate of acetylcholine receptors at end-plates in vivo and in vitro. J Physiol 336:159–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

  • Brett RS, Younkin SG, Konieczkowski M, Slugg RM (1982) Accelerated degradation of junctional acetylcholine receptor-alpha-bungarotoxin complexes in denervated rat diaphragm. Brain Res 233:133–142

    Article  CAS  PubMed  Google Scholar 

  • Bruneau E, Sutter D, Hume RI, Akaaboune M (2005) Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J Neurosci 25:9949–9959

    Article  CAS  PubMed  Google Scholar 

  • Centner T, Yano J, Kimura E et al (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Huang MC (1975) Turnover of junctional and extra junctional acetylcholine receptors of the rat diaphragm. Nature 253:643–644

    Article  CAS  PubMed  Google Scholar 

  • Engel AG, Franzini-Armstrong C (2004) Myology, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Engel AG, Fumagalli G (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found Symp 90:197–224

    CAS  PubMed  Google Scholar 

  • Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165–227

    CAS  PubMed  Google Scholar 

  • Fumagalli G, Engel AG, Lindstrom J (1982) Ultrastructural aspects of acetylcholine receptor turnover at the normal end-plate and in autoimmune myasthenia gravis. J Neuropathol Exp Neurol 41:567–579

    Article  CAS  PubMed  Google Scholar 

  • Khan MM, Strack S, Wild F et al (2014) Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 10:123–136. doi:10.4161/auto.26841

    Article  CAS  PubMed  Google Scholar 

  • Levitt TA, Salpeter MM (1981) Denervated endplates have a dual population of junctional acetylcholine receptors. Nature 291:239–241

    Article  CAS  PubMed  Google Scholar 

  • Levitt TA, Loring RH, Salpeter MM (1980) Neuronal control of acetylcholine receptor turnover rate at a vertebrate neuromuscular junction. Science 210:550–551

    Article  CAS  PubMed  Google Scholar 

  • Lipsky NG, Drachman DB, Pestronk A, Shih PJ (1989) Neural regulation of mRNA for the alpha-subunit of acetylcholine receptors: role of neuromuscular transmission. Exp Neurol 105:171–176

    Article  CAS  PubMed  Google Scholar 

  • Loring RH, Salpeter MM (1980) Denervation increases turnover rate of junctional acetylcholine receptors. Proc Natl Acad Sci USA 77:2293–2297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchand S, Devillers-Thiery A, Pons S et al (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22:8891–8901

    CAS  PubMed  Google Scholar 

  • Merlie JP, Changeux JP, Gros F (1976) Acetylcholine receptor degradation measured by pulse chase labelling. Nature 264:74–76

    Article  CAS  PubMed  Google Scholar 

  • Ramsay DA, Drachman DB, Drachman RJ, Stanley EF (1992) Stabilization of acetylcholine receptors at the neuromuscular synapse: the role of the nerve. Brain Res 581:198–207

    Article  CAS  PubMed  Google Scholar 

  • Röder IV, Petersen Y, Choi KR et al (2008) Role of Myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS ONE 3:e3871. doi:10.1371/journal.pone.0003871

    Article  PubMed Central  PubMed  Google Scholar 

  • Röder IV, Choi K-RR, Reischl M et al (2010) Myosin Va cooperates with PKA RIalpha to mediate maintenance of the endplate in vivo. Proc Natl Acad Sci USA 107:2031–2036. doi:10.1073/pnas.0914087107

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudolf R, Bogomolovas J, Strack S et al (2013) Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. Age (Dordr) 35:1663–1674. doi:10.1007/s11357-012-9468-9

    Article  PubMed Central  CAS  Google Scholar 

  • Rudolf R, Khan MM, Labeit S, Deschenes MR (2014) Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 6:99. doi:10.3389/fnagi.2014.00099

    Article  PubMed Central  PubMed  Google Scholar 

  • Slater CR (2003) Structural determinants of the reliability of synaptic transmission at the vertebrate neuromuscular junction. J Neurocytol 32:505–522

    Article  CAS  PubMed  Google Scholar 

  • Smith MM, Lindstrom J, Merlie JP (1987) Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. J Biol Chem 262:4367–4376

    CAS  PubMed  Google Scholar 

  • Stanley EF, Drachman DB (1981) Denervation accelerates the degradation of junctional acetylcholine receptors. Exp Neurol 73:390–396

    Article  CAS  PubMed  Google Scholar 

  • Stanley EF, Drachman DB (1983) Rapid degradation of “new” acetylcholine receptors at neuromuscular junctions. Science 222:67–69

    Article  CAS  PubMed  Google Scholar 

  • Stanley EF, Drachman DB (1987) Stabilization of acetylcholine receptors at neuromuscular junctions: analysis by specific antibodies. Ann N Y Acad Sci 505:121–132

    Article  CAS  PubMed  Google Scholar 

  • Strack S, Petersen Y, Wagner A et al (2011) A novel labeling approach identifies three stability levels of acetylcholine receptors in the mouse neuromuscular junction in vivo. PLoS ONE 6:e20524. doi:10.1371/journal.pone.0020524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wanamaker CP, Christianson JC, Green WN (2003) Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci 998:66–80

    Article  CAS  PubMed  Google Scholar 

  • Witzemann V, Barg B, Nishikawa Y et al (1987) Differential regulation of muscle acetylcholine receptor gamma- and epsilon-subunit mRNAs. FEBS Lett 223:104–112

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Slater CR (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J Physiol 500(1):165–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu R, Salpeter MM (1997) Acetylcholine receptors in innervated muscles of dystrophic mdx mice degrade as after denervation. J Neurosci 17:8194–8200

    CAS  PubMed  Google Scholar 

  • Yampolsky P, Pacifici PG, Lomb L et al (2010a) Time lapse in vivo visualization of developmental stabilization of synaptic receptors at neuromuscular junctions. J Biol Chem 285:34589–34596. doi:10.1074/jbc.M110.168880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yampolsky P, Pacifici PG, Witzemann V (2010b) Differential muscle-driven synaptic remodeling in the neuromuscular junction after denervation. Eur J Neurosci 31:646–658. doi:10.1111/j.1460-9568.2010.07096.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

RR was supported by DFG Grant RU923/8-1 and a grant of Hector foundation II. FW was funded by a PhD fellowship of the Albert und Anneliese Konanz-foundation. We are grateful for continued support of the ITG animal facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Rudolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strack, S., Khan, M.M., Wild, F. et al. Turnover of acetylcholine receptors at the endplate revisited: novel insights into nerve-dependent behavior. J Muscle Res Cell Motil 36, 517–524 (2015). https://doi.org/10.1007/s10974-015-9418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9418-0

Keywords

Navigation