Skip to main content

Homeostatic Plasticity of the Mammalian Neuromuscular Junction

  • Chapter
  • First Online:
Vertebrate Motoneurons

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 28))

Abstract

The mammalian neuromuscular junction (NMJ) is an ideal preparation to study synaptic plasticity. Its simplicity- one input, one postsynaptic target- allows experimental manipulations and mechanistic analyses that are impossible at more complex synapses. Homeostatic synaptic plasticity attempts to maintain normal function in the face of perturbations in activity. At the NMJ, 3 aspects of activity are sensed to trigger 3 distinct mechanisms that contribute to homeostatic plasticity:

  • Block of presynaptic action potentials triggers increased quantal size secondary to increased release of acetylcholine from vesicles.

  • Simultaneous block of pre- and postsynaptic action potentials triggers an increase in the probability of vesicle release.

  • Block of acetylcholine binding to acetylcholine receptors during spontaneous fusion of single vesicles triggers an increase in the number of releasable vesicles as well as increased motoneuron excitability.

Understanding how the NMJ responds to perturbations of synaptic activity informs our understanding of its response to diverse neuromuscular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barstad JA, Lilleheil G (1968) Transversaly cut diaphragm preparation from rat. An adjuvant tool in the study of the physiology and pbarmacology of the myoneural junction. Arch Int Pharmacodyn Ther 175(2):373–390

    CAS  PubMed  Google Scholar 

  • Bichler EK, Nakanishi ST, Wang QB, Pinter MJ, Rich MM, Cope TC (2007) Enhanced transmission at a spinal synapse triggered in vivo by an injury signal independent of altered synaptic activity. J Neurosci 27(47):12851–12859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaber LC (1972) The mechanism of the facilitatory action of edrophonium in cat skeletal muscle. Br J Pharmacol 46(3):498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd IA, Martin AR (1956) The end-plate potential in mammalian muscle. J Physiol 132(1):74–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cull-Candy SG, Miledi R, Trautmann A, Uchitel OD (1980) On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J Physiol 299:621–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GW, Muller M (2015) Homeostatic control of presynaptic neurotransmitter release. Annu Rev Physiol 77:251–270

    Article  CAS  PubMed  Google Scholar 

  • Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124(3):560–573

    Article  PubMed Central  Google Scholar 

  • Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engisch KL, Rich MM, Cook N, Nowycky MC (1999) Lambert-Eaton antibodies inhibit Ca2+ currents but paradoxically increase exocytosis during stimulus trains in bovine adrenal chromaffin cells. J Neurosci 19(9):3384–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher EV, Simon CM, Pagiazitis JG, Chalif JI, Vukojicic A, Drobac E, Wang X, Mentis GZ (2017) Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci 20(7):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foehring RC, Sypert GW, Munson JB (1986a) Properties of self-reinnervated motor units of medial gastrocnemius of cat. I. Long-term reinnervation. J Neurophysiol 55(5):931–946

    Article  CAS  PubMed  Google Scholar 

  • Foehring RC, Sypert GW, Munson JB (1986b) Properties of self-reinnervated motor units of medial gastrocnemius of cat. II. Axotomized motoneurons and time course of recovery. J Neurophysiol 55(5):947–965

    Article  CAS  PubMed  Google Scholar 

  • Gallant PE (1982) The relationship between anti-acetylcholine receptor antibody levels and neuromuscular function in chronically myasthenic rats. J Neurol Sci 54(1):129–141

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bereguiain MA, Gonzalez-Islas C, Lindsly C, Wenner P (2016) Spontaneous release regulates synaptic scaling in the embryonic spinal network in vivo. J Neurosci 36(27):7268–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibb AJ, Marshall IG (1984) Pre-and post-junctional effects of tubocurarine and other nicotinic antagonists during repetitive stimulation in the rat. J Physiol 351:275–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glavinovic MI (1979) Voltage clamping of unparalysed cut rat diaphragm for study of transmitter release. J Physiol 290(2):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Islas C, Bulow P, Wenner P (2018) Regulation of synaptic scaling by action potential-independent miniature neurotransmission. J Neurosci Res 96(3):348–353

    Article  CAS  PubMed  Google Scholar 

  • Harborne AJ, Bowman WC, Marshall IG (1988) Effects of tubocurarine on end-plate current rundown and quantal content during rapid nerve stimulation in the snake. Clin Exp Pharmacol Physiol 15(6):479–490

    Article  CAS  PubMed  Google Scholar 

  • Harris N, Braiser DJ, Dickman DK, Fetter RD, Tong A, Davis GW (2015) The innate immune receptor PGRP-LC controls presynaptic homeostatic plasticity. Neuron 88(6):1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris N, Fetter RD, Brasier DJ, Tong A, Davis GW (2018) Molecular interface of neuronal innate immunity, synaptic vesicle stabilization, and presynaptic homeostatic plasticity. Neuron 100(5):1163–1179 e1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuser JE, Reese TS (1981) Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 88(3):564–580

    Article  CAS  PubMed  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81(2):275–300

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Chang CC (1991) Run-down of neuromuscular transmission during repetitive nerve activity by nicotinic antagonists is not due to desensitization of the postsynaptic receptor. Br J Pharmacol 102(4):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16(1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DM (2011) Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (Bethesda) 26(1):45–53

    CAS  Google Scholar 

  • Kelly SS, Robbins N (1987) Statistics of neuromuscular transmitter release in young and old mouse muscle. J Physiol 385:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khedraki A, Reed EJ, Romer SH, Wang Q, Romine W, Rich MM, Talmadge RJ, Voss AA (2017) Depressed synaptic transmission and reduced vesicle release sites in Huntington’s disease neuromuscular junctions. J Neurosci 37(34):8077–8091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Wang X, Choe DW, Polley M, Burnett BG, Bosch-Marce M, Griffin JW, Rich MM, Sumner CJ (2009) Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29(3):842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn H, Faber DS (1991) Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci 14(10):439–445

    Article  CAS  PubMed  Google Scholar 

  • Magleby KL, Pallotta BS, Terrar DA (1981) The effect of (+)-tubocurarine on neuromuscular transmission during repetitive stimulation in the rat, mouse, and frog. J Physiol 312:97–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez TL, Kong L, Wang X, Osborne MA, Crowder ME, Van Meerbeke JP, Xu X, Davis C, Wooley J, Goldhamer DJ, Lutz CM, Rich MM, Sumner CJ (2012) Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 32(25):8703–8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzner H, Parnas H, Parnas I (1988) Presynaptic effects of d-tubocurarine on neurotransmitter release at the neuromuscular junction of the frog. J Physiol 398:109–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA (2009) Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 39(3):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan EM, Martin AR (1981) Non-linear summation of end-plate potentials in the frog and mouse. J Physiol 311:307–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda DR, Wong M, Romer SH, McKee C, Garza-Vasquez G, Medina AC, Bahn V, Steele AD, Talmadge RJ, Voss AA (2017) Progressive Cl- channel defects reveal disrupted skeletal muscle maturation in R6/2 Huntington’s mice. J Gen Physiol 149(1):55–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto MD (1975) Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol 250(1):121–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenaar PC, Polak RL, Miledi R, Alema S, Vincent A, Newsom-Davis J (1979) Acetylcholine in intercostal muscle from myasthenia gravis patients and in rat diaphragm after blockade of acetylcholine receptors. Prog Brain Res 49:449–458

    Article  CAS  PubMed  Google Scholar 

  • Molenaar PC, Oen BS, Plomp JJ, Van Kempen GT, Jennekens FG, Hesselmans LF (1991) A non-immunogenic myasthenia gravis model and its application in a study of transsynaptic regulation at the neuromuscular junction. Eur J Pharmacol 196(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Davis GW (2012) Transsynaptic control of presynaptic Ca(2)(+) influx achieves homeostatic potentiation of neurotransmitter release. Curr Biol 22(12):1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Liu KS, Sigrist SJ, Davis GW (2012) RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J Neurosci 32(47):16574–16585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi ST, Cope TC, Rich MM, Carrasco DI, Pinter MJ (2005) Regulation of motoneuron excitability via motor endplate acetylcholine receptor activation. J Neurosci 25(9):2226–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21(5):1067–1078

    Article  PubMed  Google Scholar 

  • Orr BO, Fetter RD, Davis GW (2017) Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature 550(7674):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Personius KE, Slusher BS, Udin SB (2016) Neuromuscular NMDA receptors modulate developmental synapse elimination. J Neurosci 36(34):8783–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinter MJ, Vanden Noven S (1989) Effects of preventing reinnervation on axotomized spinal motoneurons in the cat. I. Motoneuron electrical properties. J Neurophysiol 62(2):311–324

    Article  CAS  PubMed  Google Scholar 

  • Pinter MJ, Vanden Noven S, Muccio D, Wallace N (1991) Axotomy-like changes in cat motoneuron electrical properties elicited by botulinum toxin depend on the complete elimination of neuromuscular transmission. J Neurosci 11(3):657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp JJ (2017) Trans-synaptic homeostasis at the myasthenic neuromuscular junction. Front Biosci (Landmark Ed) 22:1033–1051

    Article  CAS  Google Scholar 

  • Plomp JJ, Molenaar PC (1996) Involvement of protein kinases in the upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats. J Physiol 493(Pt 1):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp JJ, van Kempen GT, Molenaar PC (1992) Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha-bungarotoxin-treated rats. J Physiol 458:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp JJ, van Kempen GT, Molenaar PC (1994) The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: its dependency on calcium. J Physiol 478(Pt 1):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp JJ, Van Kempen GT, De Baets MB, Graus YM, Kuks JB, Molenaar PC (1995) Acetylcholine release in myasthenia gravis: regulation at single end-plate level. Ann Neurol 37(5):627–636

    Article  CAS  PubMed  Google Scholar 

  • Proskurina SE, Petrov KA, Nikolsky EE (2018) Influence of the activation of NMDA receptors on the resting membrane potential of the Postsynaptic cell at the neuromuscular junction. Acta Nat 10(3):100–102

    Article  CAS  Google Scholar 

  • Provan SD, Miyamoto MD (1993) Unbiased estimates of quantal release parameters and spatial variation in the probability of neurosecretion. Am J Phys 264(4 Pt 1):C1051–C1060

    Article  CAS  Google Scholar 

  • Redman S (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev 70(1):165–198

    Article  CAS  PubMed  Google Scholar 

  • Rich MM (2006) The control of neuromuscular transmission in health and disease. Neuroscientist 12(2):134–142

    Article  PubMed  Google Scholar 

  • Rich MM, Wenner P (2007) Sensing and expressing homeostatic synaptic plasticity. Trends Neurosci 30(3):119–125

    Article  CAS  PubMed  Google Scholar 

  • Robitaille R, Charlton MP (1992) Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J Neurosci 12(1):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz R, Casanas JJ, Torres-Benito L, Cano R, Tabares L (2010) Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 30(3):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31(6):2000–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23(2):399–409

    Article  CAS  PubMed  Google Scholar 

  • Searl TJ, Silinsky EM (2002) Evidence for two distinct processes in the final stages of neurotransmitter release as detected by binomial analysis in calcium and strontium solutions. J Physiol 539(Pt 3):693–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens CF (2003) Neurotransmitter release at central synapses. Neuron 40(2):381–388

    Article  CAS  PubMed  Google Scholar 

  • Thomsen RH, Wilson DF (1983) Effects of 4-aminopyridine and 3,4-diaminopyridine on transmitter release at the neuromuscular junction. J Pharmacol Exp Ther 227(1):260–265

    CAS  PubMed  Google Scholar 

  • Tian L, Prior C, Dempster J, Marshall IG (1994) Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals. J Physiol 476(3):517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Prior C, Dempster J, Marshall IG (1997) Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals. Br J Pharmacol 122(6):1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670):892–896

    Article  CAS  PubMed  Google Scholar 

  • Vincent A, Lang B, Newsom-Davis J (1989) Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. Trends Neurosci 12(12):496–502

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Rich MM (2018) Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis. Ann N Y Acad Sci 1412(1):170–177

    Article  PubMed  Google Scholar 

  • Wang X, Engisch KL, Li Y, Pinter MJ, Cope TC, Rich MM (2004) Decreased synaptic activity shifts the calcium dependence of release at the mammalian neuromuscular junction in vivo. J Neurosci 24(47):10687–10692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Y, Engisch KL, Nakanishi ST, Dodson SE, Miller GW, Cope TC, Pinter MJ, Rich MM (2005) Activity-dependent presynaptic regulation of quantal size at the mammalian neuromuscular junction in vivo. J Neurosci 25(2):343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Thiagarajan R, Wang Q, Tewolde T, Rich MM, Engisch KL (2008) Regulation of quantal shape by Rab3A: evidence for a fusion pore-dependent mechanism. J Physiol 586(16):3949–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Pinter MJ, Rich MM (2010a) Ca2+ dependence of the binomial parameters p and n at the mouse neuromuscular junction. J Neurophysiol 103(2):659–666

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Q, Engisch KL, Rich MM (2010b) Activity-dependent regulation of the binomial parameters p and n at the mouse neuromuscular junction in vivo. J Neurophysiol 104(5):2352–2358

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Q, Yang S, Bucan M, Rich MM, Engisch KL (2011) Impaired activity-dependent plasticity of quantal amplitude at the neuromuscular junction of Rab3A deletion and Rab3A earlybird mutant mice. J Neurosci 31(10):3580–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Hauswirth AG, Tong A, Dickman DK, Davis GW (2014) Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity. Neuron 83(3):616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Pinter MJ, Rich MM (2016) Reversible recruitment of a homeostatic reserve pool of synaptic vesicles underlies rapid homeostatic plasticity of quantal content. J Neurosci 36(3):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, McIntosh JM, Rich MM (2018) Muscle Nicotinic Acetylcholine receptors may mediate trans-synaptic signaling at the mouse neuromuscular junction. J Neurosci 38(7):1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CW, Varuzhanyan G, Talmadge RJ, Voss AA (2013) Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction. Proc Natl Acad Sci U S A 110(22):9160–9165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig A (1975) Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J Physiol 244(1):207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DF (1982) Influence of presynaptic receptors on neuromuscular transmission in rat. Am J Physiol 242(5):C366–C372

    Article  CAS  PubMed  Google Scholar 

  • Wilson DF, Thomsen RH (1991) Nicotinic receptors on the rat phrenic nerve: evidence for negative feedback. Neurosci Lett 132(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Wilson DF, West AE, Lin Y (1995) Inhibitory action of nicotinic antagonists on transmitter release at the neuromuscular junction of the rat. Neurosci Lett 186(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Slater CR (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J Physiol 500(Pt 1):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younger MA, Muller M, Tong A, Pym EC, Davis GW (2013) A presynaptic ENaC channel drives homeostatic plasticity. Neuron 79(6):1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant AR074985 (M.M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Rich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engisch, K.L., Wang, X., Rich, M.M. (2022). Homeostatic Plasticity of the Mammalian Neuromuscular Junction. In: O'Donovan, M.J., Falgairolle, M. (eds) Vertebrate Motoneurons. Advances in Neurobiology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-07167-6_5

Download citation

Publish with us

Policies and ethics