Skip to main content
Log in

Characterization on thermal decompositions of tert-butyl hydroperoxide (TBHP) by confinement test

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of 20 mass% aqueous tert-butyl hydroperoxide (TBHP) is performed by confined apparatus as a model reaction. Inductive effects are verified by of hydroxyl and tert-butoxy radicals produced by the thermolysis of H2O2 and di-tert-butyl peroxide (DTBP), respectively. Solvent effects are performed by 20 mass% TBHP in acetone, n-butyl alcohol, decane, nonane, Nujol, toluene and H2O. Thermodynamic and kinetic features, such as exothermic onset temperature, adiabatic temperature rise, maximum self-heat rate, maximum pressure and maximum temperature, are thus measured and utilized to characterize these mentioned influences. Hydroxyl radical is firstly discovered to possess the highest inductive effect on decomposition of TBHP. Exothermic onset temperature of 20 mass% aqueous TBHP is lowered from 146.0 ± 1.0 to 138.0 ± 2.0, 133.0 ± 0.0, 97 ± 8.8 and 89 °C by adding 10 mass% DTBP, 20 mass% DTBP, 10 mass% H2O2 and 20 mass% H2O2 relative to the mass of TBHP, respectively. The ranking of solvent effects on the thermal stability of solvated TBHP identified by exothermic onset temperature is arranged from high to low in the following: TBHP in toluene (178.5 ± 1.5 °C) > TBHP in decane (151.0 ± 2.0 °C) > TBHP in H2O (146.0 ± 1.0 °C) > TBHP in nonane (143.5 ± 2.5 °C) > TBHP in Nujol (138.5 ± 0.5 °C) > TBHP in acetone (128.0 ± 2.0 °C) > TBHP in n-BuOH (122.5 ± 3.5 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Frequency factor (s−1 M1−n)

E a :

Activation energy (kJ mol−1)

ΔH :

Heat of reaction (kJ mol−1)

R:

Gas constant (8.314 J mol−1 K−1)

s :

Specific heat (J g−1 K−1)

T A :

Corrected temperature of TBHP formulation under runaway reaction (K)

T A0 :

Corrected onset temperature of TBHP formulation under runaway reaction (K)

T M :

Measured temperature of TBHP formulation under runaway reaction (K)

T M0 :

Measured onset temperature of TBHP formulation under runaway reaction (K)

dT/dt :

Self-heat rate (°C min−1)

(dT/dt)A(ψ=1) :

Self-heat rate corrected to ψ = 1 (°C min−1)

(dT/dt)M(ψ>1) :

Measured self-heat rate at ψ > 1 (°C min−1)

ΔT AD(ψ=1) :

Adiabatic temperature rise corrected to ψ = 1 (K)

ψ :

Thermal inertia

A:

Adiabatic

AD:

Adiabatic

M:

Measured

References

  1. Ho TC, Duh YS, Chen JR. Case studies of incidents in runaway reactions and emergency relief. Process Saf Prog. 1998;17:259–62.

    Article  CAS  Google Scholar 

  2. Duh YS, Wu XH, Kao CS. Hazard ratings for organic peroxides. Process Saf Prog. 2008;27:89–99.

    Article  CAS  Google Scholar 

  3. Huiping L, Lanyun G, Peng Z, Zhangrui L, Bo Z. Evaluation on the thermal hazard of tert-butyl hydroperoxide by using accelerating rate calorimeter. Proced Eng. 2012;45:574–9.

    Article  Google Scholar 

  4. Hsu JM, Su MS, Huang CY, Duh YS. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO. J Hazard Mater. 2012;217–218:19–29.

    Article  Google Scholar 

  5. Yeh PY, Shu CM, Duh YS. Thermal hazard analysis of methyl ethyl ketone peroxide. Ind Eng Chem Res. 2002;42:1–5.

    Article  Google Scholar 

  6. Duh YS, Kao CS, Lee C, Yu SW. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process. Trans I Chem E Part B Process Saf Environ Prot. 1997;75:79–80.

    Google Scholar 

  7. Duh YS, Kao CS, Hwang HH, Lee WL. Thermal decomposition kinetics of cumene hydroperoxide. Trans I Chem E Part B Process Saf Environ Prot. 1998;76:271–6.

    Article  CAS  Google Scholar 

  8. Wang YW, Shu CM, Duh YS, Kao CS. Thermal runaway hazards of cumene hydroperoxide with contaminants. Ind Eng Chem Res. 2001;40:1125–32.

    Article  CAS  Google Scholar 

  9. Hou HY, Shu CM, Duh YS. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 2001;47:1893–6.

    Article  CAS  Google Scholar 

  10. Hou HY, Liao TS, Duh YS, Shu CM. Thermal hazard studies for dicumyl peroxide by DSC and TAM. J Therm Anal Calorim. 2006;83:1–5.

    Article  Google Scholar 

  11. Hou HY, Duh YS, Lee WL, Shu CM. Hazard evaluation for redox system of cumene hydroperoxide mixed with inorganic alkaline solutions. J Therm Anal Calorim. 2009;95:541–5.

    Article  CAS  Google Scholar 

  12. U.S. Chemical Safety and Hazard Investigation Board. Fire and explosion hazards of benzoyl peroxide. No. 2003-03-C-OH, October 2003.

  13. Recommendations on the transport of dangerous goods, vol. I. 17th revised ed. New York and Geneva: United Nation publication; 2011. p. 105–125.

  14. NFPA 432, Code for the storage of organic peroxide formulations, 2002 ed. National Fire Protection Association, Quincy; 2002

  15. NFPA 704, Standard system for the identification of the hazards materials for emergency response, 2012 ed. National Fire Protection Association, Quincy; 2012.

  16. Recommendation on the transport of dangerous goods, manual of tests and criterion. 5th revised ed. Part II, New York and Geneva: United Nation publication; 2009. p 205–317.

  17. Hiatt R, Clipsham J, Visser T. The induced decomposition of tert-butyl hydroperoxide. Can J Chem. 1964;42:2754–7.

    Article  CAS  Google Scholar 

  18. Hiatt R, Mill T, Mayo FR. Homolytic decompositions of hydroperoxides. Ι. Summary and implications for autoxidation. J Org Chem. 1967;33:1416–20.

    Article  Google Scholar 

  19. Hiatt R, Mill T, Irwin KC, Castlman JK. Homolytic decompositions of hydroperoxides. ΙΙ. Radical-induced decompositions of t-butyl hydroperoxide. J Org Chem. 1967;33:1421–7.

    Article  Google Scholar 

  20. Hiatt R, Irwin KC. Homolytic decompositions of hydroperoxides. V. Thermal decompositions of t-butyl hydroperoxide. J Org Chem. 1967;33:1436–41.

    Article  Google Scholar 

  21. Thomas JR. The self-reactions of t-butylperoxy radicals. J Am Chem Soc. 1965;87:3935–40.

    Article  CAS  Google Scholar 

  22. Nangia PS, Benson SW. The kinetics of the interaction of peroxy radicals. Ι. The tertiary peroxy radicals. Int J Chem Kinet. 1980;12:29–42.

    Article  CAS  Google Scholar 

  23. Wang YW, Duh YS, Shu CM. Characterization of the self-reactive decomposition of tert-butyl hydroperoxide in three different diluents. Process Saf Prog. 2007;26:299–303.

    Article  CAS  Google Scholar 

  24. Wang YW, Duh YS, Shu CM. Thermal runaway hazards of tert-butyl hydroperoxide by calorimetric studies. J Therm Anal Calorim. 2009;95:553–7.

    Article  CAS  Google Scholar 

  25. ASTM E476-87. Standard test method for thermal instability of confined condensed phase systems (confinement test), American Society for Testing and Materials; 2001.

  26. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  27. Emergency relief system design using DIERS technology: the design institute for emergency relief systems (DIERS) project manual, AIChE, New York; 1992.

  28. Hiatt R. Chapter Ι. Hydroperoxides. In: Swern D, editor. Organic peroxides, vol. II. 2nd ed. New York: Robert E. Krieger publishing company, Inc.; 1981. p. 1–151.

    Google Scholar 

  29. Tse KM. The kinetics and induced decomposition on the thermal decomposition of hydroperoxide. MS thesis. Brock University, St. Catharines, Ontario, Canada. 1976.

  30. Iizuka Y, Surianarayanan M. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using BatchCAD. Ind Eng Chem Res. 2003;42:2987–95.

    Article  CAS  Google Scholar 

  31. Kersten RJA, Boers MN, Stork MM, Visser C. Results of a round-robin with di-tertbutyl peroxide in various adiabatic equipment for assessment of runaway reaction hazards. J Loss Prevent Proc. 2005;18:145–51.

    Article  Google Scholar 

  32. Andreozzi R, Caprio V, Crescitelli S, Russo G. The thermal stability of tert-butyl hydroperoxide-acid mixture. J Hazard Mater. 1988;17:305–13.

    Article  CAS  Google Scholar 

  33. Wehrstedt KD, Knorr A, Schuurman P. The (MCPVT) as a screening or classification test for explosive properties of organic peroxides. J Loss Prev Ind. 2003;16:523–31.

    Article  Google Scholar 

  34. Shanley ES. Chapter V. Organic peroxides: evaluation and management of hazards. In: Swern D, editor. Organic peroxides, vol. III. 2nd ed. New York: Robert E. Krieger publishing company, Inc.; 1981. p. 341–64.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Science Council, R.O.C., for financial support of this study under Contract No. NSC 101-2221-E-239-017-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Shan Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duh, YS., Kuo, HY. & Kao, CS. Characterization on thermal decompositions of tert-butyl hydroperoxide (TBHP) by confinement test. J Therm Anal Calorim 127, 1047–1059 (2017). https://doi.org/10.1007/s10973-016-5898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5898-4

Keywords

Navigation